Step |
Hyp |
Ref |
Expression |
1 |
|
symgfixf.p |
⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) |
2 |
|
symgfixf.q |
⊢ 𝑄 = { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } |
3 |
|
symgfixf.s |
⊢ 𝑆 = ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) |
4 |
|
symgfixf.d |
⊢ 𝐷 = ( 𝑁 ∖ { 𝐾 } ) |
5 |
1 2
|
symgfixelq |
⊢ ( 𝐹 ∈ 𝑄 → ( 𝐹 ∈ 𝑄 ↔ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ) ) |
6 |
|
f1of1 |
⊢ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 → 𝐹 : 𝑁 –1-1→ 𝑁 ) |
7 |
6
|
ad2antrl |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ) → 𝐹 : 𝑁 –1-1→ 𝑁 ) |
8 |
|
difssd |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ) → ( 𝑁 ∖ { 𝐾 } ) ⊆ 𝑁 ) |
9 |
|
f1ores |
⊢ ( ( 𝐹 : 𝑁 –1-1→ 𝑁 ∧ ( 𝑁 ∖ { 𝐾 } ) ⊆ 𝑁 ) → ( 𝐹 ↾ ( 𝑁 ∖ { 𝐾 } ) ) : ( 𝑁 ∖ { 𝐾 } ) –1-1-onto→ ( 𝐹 “ ( 𝑁 ∖ { 𝐾 } ) ) ) |
10 |
7 8 9
|
syl2anc |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ) → ( 𝐹 ↾ ( 𝑁 ∖ { 𝐾 } ) ) : ( 𝑁 ∖ { 𝐾 } ) –1-1-onto→ ( 𝐹 “ ( 𝑁 ∖ { 𝐾 } ) ) ) |
11 |
4
|
reseq2i |
⊢ ( 𝐹 ↾ 𝐷 ) = ( 𝐹 ↾ ( 𝑁 ∖ { 𝐾 } ) ) |
12 |
11
|
a1i |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ) → ( 𝐹 ↾ 𝐷 ) = ( 𝐹 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) |
13 |
4
|
a1i |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ) → 𝐷 = ( 𝑁 ∖ { 𝐾 } ) ) |
14 |
|
f1ofo |
⊢ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 → 𝐹 : 𝑁 –onto→ 𝑁 ) |
15 |
|
foima |
⊢ ( 𝐹 : 𝑁 –onto→ 𝑁 → ( 𝐹 “ 𝑁 ) = 𝑁 ) |
16 |
15
|
eqcomd |
⊢ ( 𝐹 : 𝑁 –onto→ 𝑁 → 𝑁 = ( 𝐹 “ 𝑁 ) ) |
17 |
14 16
|
syl |
⊢ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 → 𝑁 = ( 𝐹 “ 𝑁 ) ) |
18 |
17
|
ad2antrl |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ) → 𝑁 = ( 𝐹 “ 𝑁 ) ) |
19 |
|
sneq |
⊢ ( 𝐾 = ( 𝐹 ‘ 𝐾 ) → { 𝐾 } = { ( 𝐹 ‘ 𝐾 ) } ) |
20 |
19
|
eqcoms |
⊢ ( ( 𝐹 ‘ 𝐾 ) = 𝐾 → { 𝐾 } = { ( 𝐹 ‘ 𝐾 ) } ) |
21 |
20
|
ad2antll |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ) → { 𝐾 } = { ( 𝐹 ‘ 𝐾 ) } ) |
22 |
|
f1ofn |
⊢ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 → 𝐹 Fn 𝑁 ) |
23 |
22
|
ad2antrl |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ) → 𝐹 Fn 𝑁 ) |
24 |
|
simpl |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ) → 𝐾 ∈ 𝑁 ) |
25 |
|
fnsnfv |
⊢ ( ( 𝐹 Fn 𝑁 ∧ 𝐾 ∈ 𝑁 ) → { ( 𝐹 ‘ 𝐾 ) } = ( 𝐹 “ { 𝐾 } ) ) |
26 |
23 24 25
|
syl2anc |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ) → { ( 𝐹 ‘ 𝐾 ) } = ( 𝐹 “ { 𝐾 } ) ) |
27 |
21 26
|
eqtrd |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ) → { 𝐾 } = ( 𝐹 “ { 𝐾 } ) ) |
28 |
18 27
|
difeq12d |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ) → ( 𝑁 ∖ { 𝐾 } ) = ( ( 𝐹 “ 𝑁 ) ∖ ( 𝐹 “ { 𝐾 } ) ) ) |
29 |
|
dff1o2 |
⊢ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ↔ ( 𝐹 Fn 𝑁 ∧ Fun ◡ 𝐹 ∧ ran 𝐹 = 𝑁 ) ) |
30 |
29
|
simp2bi |
⊢ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 → Fun ◡ 𝐹 ) |
31 |
30
|
ad2antrl |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ) → Fun ◡ 𝐹 ) |
32 |
|
imadif |
⊢ ( Fun ◡ 𝐹 → ( 𝐹 “ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( 𝐹 “ 𝑁 ) ∖ ( 𝐹 “ { 𝐾 } ) ) ) |
33 |
31 32
|
syl |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ) → ( 𝐹 “ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( 𝐹 “ 𝑁 ) ∖ ( 𝐹 “ { 𝐾 } ) ) ) |
34 |
28 13 33
|
3eqtr4d |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ) → 𝐷 = ( 𝐹 “ ( 𝑁 ∖ { 𝐾 } ) ) ) |
35 |
12 13 34
|
f1oeq123d |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ) → ( ( 𝐹 ↾ 𝐷 ) : 𝐷 –1-1-onto→ 𝐷 ↔ ( 𝐹 ↾ ( 𝑁 ∖ { 𝐾 } ) ) : ( 𝑁 ∖ { 𝐾 } ) –1-1-onto→ ( 𝐹 “ ( 𝑁 ∖ { 𝐾 } ) ) ) ) |
36 |
10 35
|
mpbird |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ) → ( 𝐹 ↾ 𝐷 ) : 𝐷 –1-1-onto→ 𝐷 ) |
37 |
36
|
ancoms |
⊢ ( ( ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ∧ 𝐾 ∈ 𝑁 ) → ( 𝐹 ↾ 𝐷 ) : 𝐷 –1-1-onto→ 𝐷 ) |
38 |
1 2 3 4
|
symgfixels |
⊢ ( 𝐹 ∈ 𝑄 → ( ( 𝐹 ↾ 𝐷 ) ∈ 𝑆 ↔ ( 𝐹 ↾ 𝐷 ) : 𝐷 –1-1-onto→ 𝐷 ) ) |
39 |
37 38
|
syl5ibr |
⊢ ( 𝐹 ∈ 𝑄 → ( ( ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) ∧ 𝐾 ∈ 𝑁 ) → ( 𝐹 ↾ 𝐷 ) ∈ 𝑆 ) ) |
40 |
39
|
expd |
⊢ ( 𝐹 ∈ 𝑄 → ( ( 𝐹 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐹 ‘ 𝐾 ) = 𝐾 ) → ( 𝐾 ∈ 𝑁 → ( 𝐹 ↾ 𝐷 ) ∈ 𝑆 ) ) ) |
41 |
5 40
|
sylbid |
⊢ ( 𝐹 ∈ 𝑄 → ( 𝐹 ∈ 𝑄 → ( 𝐾 ∈ 𝑁 → ( 𝐹 ↾ 𝐷 ) ∈ 𝑆 ) ) ) |
42 |
41
|
pm2.43i |
⊢ ( 𝐹 ∈ 𝑄 → ( 𝐾 ∈ 𝑁 → ( 𝐹 ↾ 𝐷 ) ∈ 𝑆 ) ) |
43 |
42
|
impcom |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝐹 ∈ 𝑄 ) → ( 𝐹 ↾ 𝐷 ) ∈ 𝑆 ) |