Description: The mapping of a permutation of a set fixing an element to a permutation of the set without the fixed element is a function. (Contributed by AV, 4-Jan-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | symgfixf.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
symgfixf.q | ⊢ 𝑄 = { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } | ||
symgfixf.s | ⊢ 𝑆 = ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) | ||
symgfixf.h | ⊢ 𝐻 = ( 𝑞 ∈ 𝑄 ↦ ( 𝑞 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) | ||
Assertion | symgfixf | ⊢ ( 𝐾 ∈ 𝑁 → 𝐻 : 𝑄 ⟶ 𝑆 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symgfixf.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
2 | symgfixf.q | ⊢ 𝑄 = { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } | |
3 | symgfixf.s | ⊢ 𝑆 = ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) | |
4 | symgfixf.h | ⊢ 𝐻 = ( 𝑞 ∈ 𝑄 ↦ ( 𝑞 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) | |
5 | eqid | ⊢ ( 𝑁 ∖ { 𝐾 } ) = ( 𝑁 ∖ { 𝐾 } ) | |
6 | 1 2 3 5 | symgfixelsi | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑞 ∈ 𝑄 ) → ( 𝑞 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ∈ 𝑆 ) |
7 | 6 4 | fmptd | ⊢ ( 𝐾 ∈ 𝑁 → 𝐻 : 𝑄 ⟶ 𝑆 ) |