Metamath Proof Explorer


Theorem symgfixf

Description: The mapping of a permutation of a set fixing an element to a permutation of the set without the fixed element is a function. (Contributed by AV, 4-Jan-2019)

Ref Expression
Hypotheses symgfixf.p 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) )
symgfixf.q 𝑄 = { 𝑞𝑃 ∣ ( 𝑞𝐾 ) = 𝐾 }
symgfixf.s 𝑆 = ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) )
symgfixf.h 𝐻 = ( 𝑞𝑄 ↦ ( 𝑞 ↾ ( 𝑁 ∖ { 𝐾 } ) ) )
Assertion symgfixf ( 𝐾𝑁𝐻 : 𝑄𝑆 )

Proof

Step Hyp Ref Expression
1 symgfixf.p 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) )
2 symgfixf.q 𝑄 = { 𝑞𝑃 ∣ ( 𝑞𝐾 ) = 𝐾 }
3 symgfixf.s 𝑆 = ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) )
4 symgfixf.h 𝐻 = ( 𝑞𝑄 ↦ ( 𝑞 ↾ ( 𝑁 ∖ { 𝐾 } ) ) )
5 eqid ( 𝑁 ∖ { 𝐾 } ) = ( 𝑁 ∖ { 𝐾 } )
6 1 2 3 5 symgfixelsi ( ( 𝐾𝑁𝑞𝑄 ) → ( 𝑞 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ∈ 𝑆 )
7 6 4 fmptd ( 𝐾𝑁𝐻 : 𝑄𝑆 )