Metamath Proof Explorer


Theorem symgfv

Description: The function value of a permutation. (Contributed by AV, 1-Jan-2019)

Ref Expression
Hypotheses symgbas.1 𝐺 = ( SymGrp ‘ 𝐴 )
symgbas.2 𝐵 = ( Base ‘ 𝐺 )
Assertion symgfv ( ( 𝐹𝐵𝑋𝐴 ) → ( 𝐹𝑋 ) ∈ 𝐴 )

Proof

Step Hyp Ref Expression
1 symgbas.1 𝐺 = ( SymGrp ‘ 𝐴 )
2 symgbas.2 𝐵 = ( Base ‘ 𝐺 )
3 1 2 symgbasf ( 𝐹𝐵𝐹 : 𝐴𝐴 )
4 3 ffvelrnda ( ( 𝐹𝐵𝑋𝐴 ) → ( 𝐹𝑋 ) ∈ 𝐴 )