| Step |
Hyp |
Ref |
Expression |
| 1 |
|
symgbas.1 |
⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) |
| 2 |
|
symgbas.2 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 3 |
1 2
|
symgbasf1o |
⊢ ( 𝐹 ∈ 𝐵 → 𝐹 : 𝐴 –1-1-onto→ 𝐴 ) |
| 4 |
|
f1of1 |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → 𝐹 : 𝐴 –1-1→ 𝐴 ) |
| 5 |
|
eqeq2 |
⊢ ( 𝑍 = ( 𝐹 ‘ 𝑋 ) → ( ( 𝐹 ‘ 𝑌 ) = 𝑍 ↔ ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) ) ) |
| 6 |
5
|
eqcoms |
⊢ ( ( 𝐹 ‘ 𝑋 ) = 𝑍 → ( ( 𝐹 ‘ 𝑌 ) = 𝑍 ↔ ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) ) ) |
| 7 |
6
|
adantl |
⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑋 ) = 𝑍 ) → ( ( 𝐹 ‘ 𝑌 ) = 𝑍 ↔ ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) ) ) |
| 8 |
|
simp1 |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → 𝐹 : 𝐴 –1-1→ 𝐴 ) |
| 9 |
|
simp3 |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → 𝑌 ∈ 𝐴 ) |
| 10 |
|
simp2 |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → 𝑋 ∈ 𝐴 ) |
| 11 |
|
f1veqaeq |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐴 ∧ ( 𝑌 ∈ 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) → 𝑌 = 𝑋 ) ) |
| 12 |
8 9 10 11
|
syl12anc |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) → 𝑌 = 𝑋 ) ) |
| 13 |
12
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑋 ) = 𝑍 ) → ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) → 𝑌 = 𝑋 ) ) |
| 14 |
7 13
|
sylbid |
⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑋 ) = 𝑍 ) → ( ( 𝐹 ‘ 𝑌 ) = 𝑍 → 𝑌 = 𝑋 ) ) |
| 15 |
14
|
necon3d |
⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑋 ) = 𝑍 ) → ( 𝑌 ≠ 𝑋 → ( 𝐹 ‘ 𝑌 ) ≠ 𝑍 ) ) |
| 16 |
15
|
3exp1 |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐴 → ( 𝑋 ∈ 𝐴 → ( 𝑌 ∈ 𝐴 → ( ( 𝐹 ‘ 𝑋 ) = 𝑍 → ( 𝑌 ≠ 𝑋 → ( 𝐹 ‘ 𝑌 ) ≠ 𝑍 ) ) ) ) ) |
| 17 |
3 4 16
|
3syl |
⊢ ( 𝐹 ∈ 𝐵 → ( 𝑋 ∈ 𝐴 → ( 𝑌 ∈ 𝐴 → ( ( 𝐹 ‘ 𝑋 ) = 𝑍 → ( 𝑌 ≠ 𝑋 → ( 𝐹 ‘ 𝑌 ) ≠ 𝑍 ) ) ) ) ) |
| 18 |
17
|
3imp |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) = 𝑍 → ( 𝑌 ≠ 𝑋 → ( 𝐹 ‘ 𝑌 ) ≠ 𝑍 ) ) ) |