Metamath Proof Explorer


Theorem symgfvne

Description: The function values of a permutation for different arguments are different. (Contributed by AV, 8-Jan-2019)

Ref Expression
Hypotheses symgbas.1 𝐺 = ( SymGrp ‘ 𝐴 )
symgbas.2 𝐵 = ( Base ‘ 𝐺 )
Assertion symgfvne ( ( 𝐹𝐵𝑋𝐴𝑌𝐴 ) → ( ( 𝐹𝑋 ) = 𝑍 → ( 𝑌𝑋 → ( 𝐹𝑌 ) ≠ 𝑍 ) ) )

Proof

Step Hyp Ref Expression
1 symgbas.1 𝐺 = ( SymGrp ‘ 𝐴 )
2 symgbas.2 𝐵 = ( Base ‘ 𝐺 )
3 1 2 symgbasf1o ( 𝐹𝐵𝐹 : 𝐴1-1-onto𝐴 )
4 f1of1 ( 𝐹 : 𝐴1-1-onto𝐴𝐹 : 𝐴1-1𝐴 )
5 eqeq2 ( 𝑍 = ( 𝐹𝑋 ) → ( ( 𝐹𝑌 ) = 𝑍 ↔ ( 𝐹𝑌 ) = ( 𝐹𝑋 ) ) )
6 5 eqcoms ( ( 𝐹𝑋 ) = 𝑍 → ( ( 𝐹𝑌 ) = 𝑍 ↔ ( 𝐹𝑌 ) = ( 𝐹𝑋 ) ) )
7 6 adantl ( ( ( 𝐹 : 𝐴1-1𝐴𝑋𝐴𝑌𝐴 ) ∧ ( 𝐹𝑋 ) = 𝑍 ) → ( ( 𝐹𝑌 ) = 𝑍 ↔ ( 𝐹𝑌 ) = ( 𝐹𝑋 ) ) )
8 simp1 ( ( 𝐹 : 𝐴1-1𝐴𝑋𝐴𝑌𝐴 ) → 𝐹 : 𝐴1-1𝐴 )
9 simp3 ( ( 𝐹 : 𝐴1-1𝐴𝑋𝐴𝑌𝐴 ) → 𝑌𝐴 )
10 simp2 ( ( 𝐹 : 𝐴1-1𝐴𝑋𝐴𝑌𝐴 ) → 𝑋𝐴 )
11 f1veqaeq ( ( 𝐹 : 𝐴1-1𝐴 ∧ ( 𝑌𝐴𝑋𝐴 ) ) → ( ( 𝐹𝑌 ) = ( 𝐹𝑋 ) → 𝑌 = 𝑋 ) )
12 8 9 10 11 syl12anc ( ( 𝐹 : 𝐴1-1𝐴𝑋𝐴𝑌𝐴 ) → ( ( 𝐹𝑌 ) = ( 𝐹𝑋 ) → 𝑌 = 𝑋 ) )
13 12 adantr ( ( ( 𝐹 : 𝐴1-1𝐴𝑋𝐴𝑌𝐴 ) ∧ ( 𝐹𝑋 ) = 𝑍 ) → ( ( 𝐹𝑌 ) = ( 𝐹𝑋 ) → 𝑌 = 𝑋 ) )
14 7 13 sylbid ( ( ( 𝐹 : 𝐴1-1𝐴𝑋𝐴𝑌𝐴 ) ∧ ( 𝐹𝑋 ) = 𝑍 ) → ( ( 𝐹𝑌 ) = 𝑍𝑌 = 𝑋 ) )
15 14 necon3d ( ( ( 𝐹 : 𝐴1-1𝐴𝑋𝐴𝑌𝐴 ) ∧ ( 𝐹𝑋 ) = 𝑍 ) → ( 𝑌𝑋 → ( 𝐹𝑌 ) ≠ 𝑍 ) )
16 15 3exp1 ( 𝐹 : 𝐴1-1𝐴 → ( 𝑋𝐴 → ( 𝑌𝐴 → ( ( 𝐹𝑋 ) = 𝑍 → ( 𝑌𝑋 → ( 𝐹𝑌 ) ≠ 𝑍 ) ) ) ) )
17 3 4 16 3syl ( 𝐹𝐵 → ( 𝑋𝐴 → ( 𝑌𝐴 → ( ( 𝐹𝑋 ) = 𝑍 → ( 𝑌𝑋 → ( 𝐹𝑌 ) ≠ 𝑍 ) ) ) ) )
18 17 3imp ( ( 𝐹𝐵𝑋𝐴𝑌𝐴 ) → ( ( 𝐹𝑋 ) = 𝑍 → ( 𝑌𝑋 → ( 𝐹𝑌 ) ≠ 𝑍 ) ) )