Metamath Proof Explorer


Theorem symggen

Description: The span of the transpositions is the subgroup that moves finitely many points. (Contributed by Stefan O'Rear, 28-Aug-2015)

Ref Expression
Hypotheses symgtrf.t 𝑇 = ran ( pmTrsp ‘ 𝐷 )
symgtrf.g 𝐺 = ( SymGrp ‘ 𝐷 )
symgtrf.b 𝐵 = ( Base ‘ 𝐺 )
symggen.k 𝐾 = ( mrCls ‘ ( SubMnd ‘ 𝐺 ) )
Assertion symggen ( 𝐷𝑉 → ( 𝐾𝑇 ) = { 𝑥𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } )

Proof

Step Hyp Ref Expression
1 symgtrf.t 𝑇 = ran ( pmTrsp ‘ 𝐷 )
2 symgtrf.g 𝐺 = ( SymGrp ‘ 𝐷 )
3 symgtrf.b 𝐵 = ( Base ‘ 𝐺 )
4 symggen.k 𝐾 = ( mrCls ‘ ( SubMnd ‘ 𝐺 ) )
5 elex ( 𝐷𝑉𝐷 ∈ V )
6 2 symggrp ( 𝐷 ∈ V → 𝐺 ∈ Grp )
7 grpmnd ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd )
8 6 7 syl ( 𝐷 ∈ V → 𝐺 ∈ Mnd )
9 3 submacs ( 𝐺 ∈ Mnd → ( SubMnd ‘ 𝐺 ) ∈ ( ACS ‘ 𝐵 ) )
10 acsmre ( ( SubMnd ‘ 𝐺 ) ∈ ( ACS ‘ 𝐵 ) → ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) )
11 8 9 10 3syl ( 𝐷 ∈ V → ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) )
12 5 11 syl ( 𝐷𝑉 → ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) )
13 1 2 3 symgtrf 𝑇𝐵
14 13 a1i ( 𝐷𝑉𝑇𝐵 )
15 2onn 2o ∈ ω
16 nnfi ( 2o ∈ ω → 2o ∈ Fin )
17 15 16 ax-mp 2o ∈ Fin
18 eqid ( pmTrsp ‘ 𝐷 ) = ( pmTrsp ‘ 𝐷 )
19 18 1 pmtrfb ( 𝑥𝑇 ↔ ( 𝐷 ∈ V ∧ 𝑥 : 𝐷1-1-onto𝐷 ∧ dom ( 𝑥 ∖ I ) ≈ 2o ) )
20 19 simp3bi ( 𝑥𝑇 → dom ( 𝑥 ∖ I ) ≈ 2o )
21 enfi ( dom ( 𝑥 ∖ I ) ≈ 2o → ( dom ( 𝑥 ∖ I ) ∈ Fin ↔ 2o ∈ Fin ) )
22 20 21 syl ( 𝑥𝑇 → ( dom ( 𝑥 ∖ I ) ∈ Fin ↔ 2o ∈ Fin ) )
23 22 adantl ( ( 𝐷𝑉𝑥𝑇 ) → ( dom ( 𝑥 ∖ I ) ∈ Fin ↔ 2o ∈ Fin ) )
24 17 23 mpbiri ( ( 𝐷𝑉𝑥𝑇 ) → dom ( 𝑥 ∖ I ) ∈ Fin )
25 14 24 ssrabdv ( 𝐷𝑉𝑇 ⊆ { 𝑥𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } )
26 2 3 symgfisg ( 𝐷𝑉 → { 𝑥𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ∈ ( SubGrp ‘ 𝐺 ) )
27 subgsubm ( { 𝑥𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ∈ ( SubGrp ‘ 𝐺 ) → { 𝑥𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ∈ ( SubMnd ‘ 𝐺 ) )
28 26 27 syl ( 𝐷𝑉 → { 𝑥𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ∈ ( SubMnd ‘ 𝐺 ) )
29 4 mrcsscl ( ( ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) ∧ 𝑇 ⊆ { 𝑥𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ∧ { 𝑥𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ∈ ( SubMnd ‘ 𝐺 ) ) → ( 𝐾𝑇 ) ⊆ { 𝑥𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } )
30 12 25 28 29 syl3anc ( 𝐷𝑉 → ( 𝐾𝑇 ) ⊆ { 𝑥𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } )
31 vex 𝑥 ∈ V
32 31 a1i ( dom ( 𝑥 ∖ I ) ∈ Fin → 𝑥 ∈ V )
33 finnum ( dom ( 𝑥 ∖ I ) ∈ Fin → dom ( 𝑥 ∖ I ) ∈ dom card )
34 domfi ( ( dom ( 𝑥 ∖ I ) ∈ Fin ∧ dom ( 𝑦 ∖ I ) ≼ dom ( 𝑥 ∖ I ) ) → dom ( 𝑦 ∖ I ) ∈ Fin )
35 2 3 symgbasf1o ( 𝑦𝐵𝑦 : 𝐷1-1-onto𝐷 )
36 35 adantl ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) → 𝑦 : 𝐷1-1-onto𝐷 )
37 f1ofn ( 𝑦 : 𝐷1-1-onto𝐷𝑦 Fn 𝐷 )
38 fnnfpeq0 ( 𝑦 Fn 𝐷 → ( dom ( 𝑦 ∖ I ) = ∅ ↔ 𝑦 = ( I ↾ 𝐷 ) ) )
39 36 37 38 3syl ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) → ( dom ( 𝑦 ∖ I ) = ∅ ↔ 𝑦 = ( I ↾ 𝐷 ) ) )
40 2 3 elbasfv ( 𝑦𝐵𝐷 ∈ V )
41 40 adantl ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) → 𝐷 ∈ V )
42 2 symgid ( 𝐷 ∈ V → ( I ↾ 𝐷 ) = ( 0g𝐺 ) )
43 41 42 syl ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) → ( I ↾ 𝐷 ) = ( 0g𝐺 ) )
44 41 11 syl ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) → ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) )
45 4 mrccl ( ( ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) ∧ 𝑇𝐵 ) → ( 𝐾𝑇 ) ∈ ( SubMnd ‘ 𝐺 ) )
46 44 13 45 sylancl ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) → ( 𝐾𝑇 ) ∈ ( SubMnd ‘ 𝐺 ) )
47 eqid ( 0g𝐺 ) = ( 0g𝐺 )
48 47 subm0cl ( ( 𝐾𝑇 ) ∈ ( SubMnd ‘ 𝐺 ) → ( 0g𝐺 ) ∈ ( 𝐾𝑇 ) )
49 46 48 syl ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) → ( 0g𝐺 ) ∈ ( 𝐾𝑇 ) )
50 43 49 eqeltrd ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) → ( I ↾ 𝐷 ) ∈ ( 𝐾𝑇 ) )
51 eleq1a ( ( I ↾ 𝐷 ) ∈ ( 𝐾𝑇 ) → ( 𝑦 = ( I ↾ 𝐷 ) → 𝑦 ∈ ( 𝐾𝑇 ) ) )
52 50 51 syl ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) → ( 𝑦 = ( I ↾ 𝐷 ) → 𝑦 ∈ ( 𝐾𝑇 ) ) )
53 39 52 sylbid ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) → ( dom ( 𝑦 ∖ I ) = ∅ → 𝑦 ∈ ( 𝐾𝑇 ) ) )
54 53 adantr ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧𝐵𝑧 ∈ ( 𝐾𝑇 ) ) ) ) → ( dom ( 𝑦 ∖ I ) = ∅ → 𝑦 ∈ ( 𝐾𝑇 ) ) )
55 n0 ( dom ( 𝑦 ∖ I ) ≠ ∅ ↔ ∃ 𝑢 𝑢 ∈ dom ( 𝑦 ∖ I ) )
56 41 adantr ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → 𝐷 ∈ V )
57 simpr ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → 𝑢 ∈ dom ( 𝑦 ∖ I ) )
58 f1omvdmvd ( ( 𝑦 : 𝐷1-1-onto𝐷𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( 𝑦𝑢 ) ∈ ( dom ( 𝑦 ∖ I ) ∖ { 𝑢 } ) )
59 36 58 sylan ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( 𝑦𝑢 ) ∈ ( dom ( 𝑦 ∖ I ) ∖ { 𝑢 } ) )
60 59 eldifad ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( 𝑦𝑢 ) ∈ dom ( 𝑦 ∖ I ) )
61 57 60 prssd ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → { 𝑢 , ( 𝑦𝑢 ) } ⊆ dom ( 𝑦 ∖ I ) )
62 difss ( 𝑦 ∖ I ) ⊆ 𝑦
63 dmss ( ( 𝑦 ∖ I ) ⊆ 𝑦 → dom ( 𝑦 ∖ I ) ⊆ dom 𝑦 )
64 62 63 ax-mp dom ( 𝑦 ∖ I ) ⊆ dom 𝑦
65 f1odm ( 𝑦 : 𝐷1-1-onto𝐷 → dom 𝑦 = 𝐷 )
66 36 65 syl ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) → dom 𝑦 = 𝐷 )
67 64 66 sseqtrid ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) → dom ( 𝑦 ∖ I ) ⊆ 𝐷 )
68 67 adantr ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → dom ( 𝑦 ∖ I ) ⊆ 𝐷 )
69 61 68 sstrd ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → { 𝑢 , ( 𝑦𝑢 ) } ⊆ 𝐷 )
70 vex 𝑢 ∈ V
71 fvex ( 𝑦𝑢 ) ∈ V
72 36 adantr ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → 𝑦 : 𝐷1-1-onto𝐷 )
73 72 37 syl ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → 𝑦 Fn 𝐷 )
74 67 sselda ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → 𝑢𝐷 )
75 fnelnfp ( ( 𝑦 Fn 𝐷𝑢𝐷 ) → ( 𝑢 ∈ dom ( 𝑦 ∖ I ) ↔ ( 𝑦𝑢 ) ≠ 𝑢 ) )
76 73 74 75 syl2anc ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( 𝑢 ∈ dom ( 𝑦 ∖ I ) ↔ ( 𝑦𝑢 ) ≠ 𝑢 ) )
77 57 76 mpbid ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( 𝑦𝑢 ) ≠ 𝑢 )
78 77 necomd ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → 𝑢 ≠ ( 𝑦𝑢 ) )
79 pr2nelem ( ( 𝑢 ∈ V ∧ ( 𝑦𝑢 ) ∈ V ∧ 𝑢 ≠ ( 𝑦𝑢 ) ) → { 𝑢 , ( 𝑦𝑢 ) } ≈ 2o )
80 70 71 78 79 mp3an12i ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → { 𝑢 , ( 𝑦𝑢 ) } ≈ 2o )
81 18 1 pmtrrn ( ( 𝐷 ∈ V ∧ { 𝑢 , ( 𝑦𝑢 ) } ⊆ 𝐷 ∧ { 𝑢 , ( 𝑦𝑢 ) } ≈ 2o ) → ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∈ 𝑇 )
82 56 69 80 81 syl3anc ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∈ 𝑇 )
83 13 82 sseldi ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∈ 𝐵 )
84 simplr ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → 𝑦𝐵 )
85 eqid ( +g𝐺 ) = ( +g𝐺 )
86 2 3 85 symgov ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∈ 𝐵𝑦𝐵 ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) 𝑦 ) = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∘ 𝑦 ) )
87 83 84 86 syl2anc ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) 𝑦 ) = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∘ 𝑦 ) )
88 87 oveq2d ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) 𝑦 ) ) = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∘ 𝑦 ) ) )
89 41 6 syl ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) → 𝐺 ∈ Grp )
90 89 adantr ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → 𝐺 ∈ Grp )
91 3 85 grpcl ( ( 𝐺 ∈ Grp ∧ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∈ 𝐵𝑦𝐵 ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) 𝑦 ) ∈ 𝐵 )
92 90 83 84 91 syl3anc ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) 𝑦 ) ∈ 𝐵 )
93 87 92 eqeltrrd ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∘ 𝑦 ) ∈ 𝐵 )
94 2 3 85 symgov ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∈ 𝐵 ∧ ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∘ 𝑦 ) ∈ 𝐵 ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∘ 𝑦 ) ) = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∘ ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∘ 𝑦 ) ) )
95 83 93 94 syl2anc ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∘ 𝑦 ) ) = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∘ ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∘ 𝑦 ) ) )
96 coass ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ) ∘ 𝑦 ) = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∘ ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∘ 𝑦 ) )
97 18 1 pmtrfinv ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∈ 𝑇 → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ) = ( I ↾ 𝐷 ) )
98 82 97 syl ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ) = ( I ↾ 𝐷 ) )
99 98 coeq1d ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ) ∘ 𝑦 ) = ( ( I ↾ 𝐷 ) ∘ 𝑦 ) )
100 f1of ( 𝑦 : 𝐷1-1-onto𝐷𝑦 : 𝐷𝐷 )
101 fcoi2 ( 𝑦 : 𝐷𝐷 → ( ( I ↾ 𝐷 ) ∘ 𝑦 ) = 𝑦 )
102 72 100 101 3syl ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( I ↾ 𝐷 ) ∘ 𝑦 ) = 𝑦 )
103 99 102 eqtrd ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ) ∘ 𝑦 ) = 𝑦 )
104 96 103 eqtr3id ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∘ ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∘ 𝑦 ) ) = 𝑦 )
105 88 95 104 3eqtrd ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) 𝑦 ) ) = 𝑦 )
106 105 adantlr ( ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧𝐵𝑧 ∈ ( 𝐾𝑇 ) ) ) ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) 𝑦 ) ) = 𝑦 )
107 46 ad2antrr ( ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧𝐵𝑧 ∈ ( 𝐾𝑇 ) ) ) ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( 𝐾𝑇 ) ∈ ( SubMnd ‘ 𝐺 ) )
108 4 mrcssid ( ( ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) ∧ 𝑇𝐵 ) → 𝑇 ⊆ ( 𝐾𝑇 ) )
109 44 13 108 sylancl ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) → 𝑇 ⊆ ( 𝐾𝑇 ) )
110 109 adantr ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → 𝑇 ⊆ ( 𝐾𝑇 ) )
111 110 82 sseldd ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∈ ( 𝐾𝑇 ) )
112 111 adantlr ( ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧𝐵𝑧 ∈ ( 𝐾𝑇 ) ) ) ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∈ ( 𝐾𝑇 ) )
113 87 difeq1d ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) 𝑦 ) ∖ I ) = ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∘ 𝑦 ) ∖ I ) )
114 113 dmeqd ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) 𝑦 ) ∖ I ) = dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∘ 𝑦 ) ∖ I ) )
115 simpll ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → dom ( 𝑦 ∖ I ) ∈ Fin )
116 mvdco dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∘ 𝑦 ) ∖ I ) ⊆ ( dom ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∖ I ) ∪ dom ( 𝑦 ∖ I ) )
117 18 pmtrmvd ( ( 𝐷 ∈ V ∧ { 𝑢 , ( 𝑦𝑢 ) } ⊆ 𝐷 ∧ { 𝑢 , ( 𝑦𝑢 ) } ≈ 2o ) → dom ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∖ I ) = { 𝑢 , ( 𝑦𝑢 ) } )
118 56 69 80 117 syl3anc ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → dom ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∖ I ) = { 𝑢 , ( 𝑦𝑢 ) } )
119 118 61 eqsstrd ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → dom ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∖ I ) ⊆ dom ( 𝑦 ∖ I ) )
120 ssidd ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → dom ( 𝑦 ∖ I ) ⊆ dom ( 𝑦 ∖ I ) )
121 119 120 unssd ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( dom ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∖ I ) ∪ dom ( 𝑦 ∖ I ) ) ⊆ dom ( 𝑦 ∖ I ) )
122 116 121 sstrid ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∘ 𝑦 ) ∖ I ) ⊆ dom ( 𝑦 ∖ I ) )
123 fvco2 ( ( 𝑦 Fn 𝐷𝑢𝐷 ) → ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∘ 𝑦 ) ‘ 𝑢 ) = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ‘ ( 𝑦𝑢 ) ) )
124 73 74 123 syl2anc ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∘ 𝑦 ) ‘ 𝑢 ) = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ‘ ( 𝑦𝑢 ) ) )
125 prcom { 𝑢 , ( 𝑦𝑢 ) } = { ( 𝑦𝑢 ) , 𝑢 }
126 125 fveq2i ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) = ( ( pmTrsp ‘ 𝐷 ) ‘ { ( 𝑦𝑢 ) , 𝑢 } )
127 126 fveq1i ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ‘ ( 𝑦𝑢 ) ) = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { ( 𝑦𝑢 ) , 𝑢 } ) ‘ ( 𝑦𝑢 ) )
128 68 60 sseldd ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( 𝑦𝑢 ) ∈ 𝐷 )
129 18 pmtrprfv ( ( 𝐷 ∈ V ∧ ( ( 𝑦𝑢 ) ∈ 𝐷𝑢𝐷 ∧ ( 𝑦𝑢 ) ≠ 𝑢 ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { ( 𝑦𝑢 ) , 𝑢 } ) ‘ ( 𝑦𝑢 ) ) = 𝑢 )
130 56 128 74 77 129 syl13anc ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { ( 𝑦𝑢 ) , 𝑢 } ) ‘ ( 𝑦𝑢 ) ) = 𝑢 )
131 127 130 syl5eq ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ‘ ( 𝑦𝑢 ) ) = 𝑢 )
132 124 131 eqtrd ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∘ 𝑦 ) ‘ 𝑢 ) = 𝑢 )
133 2 3 symgbasf1o ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∘ 𝑦 ) ∈ 𝐵 → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∘ 𝑦 ) : 𝐷1-1-onto𝐷 )
134 f1ofn ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∘ 𝑦 ) : 𝐷1-1-onto𝐷 → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∘ 𝑦 ) Fn 𝐷 )
135 93 133 134 3syl ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∘ 𝑦 ) Fn 𝐷 )
136 fnelnfp ( ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∘ 𝑦 ) Fn 𝐷𝑢𝐷 ) → ( 𝑢 ∈ dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∘ 𝑦 ) ∖ I ) ↔ ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∘ 𝑦 ) ‘ 𝑢 ) ≠ 𝑢 ) )
137 136 necon2bbid ( ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∘ 𝑦 ) Fn 𝐷𝑢𝐷 ) → ( ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∘ 𝑦 ) ‘ 𝑢 ) = 𝑢 ↔ ¬ 𝑢 ∈ dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∘ 𝑦 ) ∖ I ) ) )
138 135 74 137 syl2anc ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∘ 𝑦 ) ‘ 𝑢 ) = 𝑢 ↔ ¬ 𝑢 ∈ dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∘ 𝑦 ) ∖ I ) ) )
139 132 138 mpbid ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ¬ 𝑢 ∈ dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∘ 𝑦 ) ∖ I ) )
140 122 57 139 ssnelpssd ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∘ 𝑦 ) ∖ I ) ⊊ dom ( 𝑦 ∖ I ) )
141 php3 ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∘ 𝑦 ) ∖ I ) ⊊ dom ( 𝑦 ∖ I ) ) → dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∘ 𝑦 ) ∖ I ) ≺ dom ( 𝑦 ∖ I ) )
142 115 140 141 syl2anc ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∘ 𝑦 ) ∖ I ) ≺ dom ( 𝑦 ∖ I ) )
143 114 142 eqbrtrd ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) 𝑦 ) ∖ I ) ≺ dom ( 𝑦 ∖ I ) )
144 143 adantlr ( ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧𝐵𝑧 ∈ ( 𝐾𝑇 ) ) ) ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) 𝑦 ) ∖ I ) ≺ dom ( 𝑦 ∖ I ) )
145 92 adantlr ( ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧𝐵𝑧 ∈ ( 𝐾𝑇 ) ) ) ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) 𝑦 ) ∈ 𝐵 )
146 ovex ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) 𝑦 ) ∈ V
147 difeq1 ( 𝑧 = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) 𝑦 ) → ( 𝑧 ∖ I ) = ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) 𝑦 ) ∖ I ) )
148 147 dmeqd ( 𝑧 = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) 𝑦 ) → dom ( 𝑧 ∖ I ) = dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) 𝑦 ) ∖ I ) )
149 148 breq1d ( 𝑧 = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) 𝑦 ) → ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) ↔ dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) 𝑦 ) ∖ I ) ≺ dom ( 𝑦 ∖ I ) ) )
150 eleq1 ( 𝑧 = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) 𝑦 ) → ( 𝑧𝐵 ↔ ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) 𝑦 ) ∈ 𝐵 ) )
151 eleq1 ( 𝑧 = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) 𝑦 ) → ( 𝑧 ∈ ( 𝐾𝑇 ) ↔ ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) 𝑦 ) ∈ ( 𝐾𝑇 ) ) )
152 150 151 imbi12d ( 𝑧 = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) 𝑦 ) → ( ( 𝑧𝐵𝑧 ∈ ( 𝐾𝑇 ) ) ↔ ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) 𝑦 ) ∈ 𝐵 → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) 𝑦 ) ∈ ( 𝐾𝑇 ) ) ) )
153 149 152 imbi12d ( 𝑧 = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) 𝑦 ) → ( ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧𝐵𝑧 ∈ ( 𝐾𝑇 ) ) ) ↔ ( dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) 𝑦 ) ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) 𝑦 ) ∈ 𝐵 → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) 𝑦 ) ∈ ( 𝐾𝑇 ) ) ) ) )
154 146 153 spcv ( ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧𝐵𝑧 ∈ ( 𝐾𝑇 ) ) ) → ( dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) 𝑦 ) ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) 𝑦 ) ∈ 𝐵 → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) 𝑦 ) ∈ ( 𝐾𝑇 ) ) ) )
155 154 ad2antlr ( ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧𝐵𝑧 ∈ ( 𝐾𝑇 ) ) ) ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) 𝑦 ) ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) 𝑦 ) ∈ 𝐵 → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) 𝑦 ) ∈ ( 𝐾𝑇 ) ) ) )
156 144 145 155 mp2d ( ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧𝐵𝑧 ∈ ( 𝐾𝑇 ) ) ) ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) 𝑦 ) ∈ ( 𝐾𝑇 ) )
157 85 submcl ( ( ( 𝐾𝑇 ) ∈ ( SubMnd ‘ 𝐺 ) ∧ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ∈ ( 𝐾𝑇 ) ∧ ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) 𝑦 ) ∈ ( 𝐾𝑇 ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) 𝑦 ) ) ∈ ( 𝐾𝑇 ) )
158 107 112 156 157 syl3anc ( ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧𝐵𝑧 ∈ ( 𝐾𝑇 ) ) ) ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦𝑢 ) } ) ( +g𝐺 ) 𝑦 ) ) ∈ ( 𝐾𝑇 ) )
159 106 158 eqeltrrd ( ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧𝐵𝑧 ∈ ( 𝐾𝑇 ) ) ) ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → 𝑦 ∈ ( 𝐾𝑇 ) )
160 159 ex ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧𝐵𝑧 ∈ ( 𝐾𝑇 ) ) ) ) → ( 𝑢 ∈ dom ( 𝑦 ∖ I ) → 𝑦 ∈ ( 𝐾𝑇 ) ) )
161 160 exlimdv ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧𝐵𝑧 ∈ ( 𝐾𝑇 ) ) ) ) → ( ∃ 𝑢 𝑢 ∈ dom ( 𝑦 ∖ I ) → 𝑦 ∈ ( 𝐾𝑇 ) ) )
162 55 161 syl5bi ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧𝐵𝑧 ∈ ( 𝐾𝑇 ) ) ) ) → ( dom ( 𝑦 ∖ I ) ≠ ∅ → 𝑦 ∈ ( 𝐾𝑇 ) ) )
163 54 162 pm2.61dne ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦𝐵 ) ∧ ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧𝐵𝑧 ∈ ( 𝐾𝑇 ) ) ) ) → 𝑦 ∈ ( 𝐾𝑇 ) )
164 163 exp31 ( dom ( 𝑦 ∖ I ) ∈ Fin → ( 𝑦𝐵 → ( ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧𝐵𝑧 ∈ ( 𝐾𝑇 ) ) ) → 𝑦 ∈ ( 𝐾𝑇 ) ) ) )
165 164 com23 ( dom ( 𝑦 ∖ I ) ∈ Fin → ( ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧𝐵𝑧 ∈ ( 𝐾𝑇 ) ) ) → ( 𝑦𝐵𝑦 ∈ ( 𝐾𝑇 ) ) ) )
166 34 165 syl ( ( dom ( 𝑥 ∖ I ) ∈ Fin ∧ dom ( 𝑦 ∖ I ) ≼ dom ( 𝑥 ∖ I ) ) → ( ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧𝐵𝑧 ∈ ( 𝐾𝑇 ) ) ) → ( 𝑦𝐵𝑦 ∈ ( 𝐾𝑇 ) ) ) )
167 166 3impia ( ( dom ( 𝑥 ∖ I ) ∈ Fin ∧ dom ( 𝑦 ∖ I ) ≼ dom ( 𝑥 ∖ I ) ∧ ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧𝐵𝑧 ∈ ( 𝐾𝑇 ) ) ) ) → ( 𝑦𝐵𝑦 ∈ ( 𝐾𝑇 ) ) )
168 eleq1w ( 𝑦 = 𝑧 → ( 𝑦𝐵𝑧𝐵 ) )
169 eleq1w ( 𝑦 = 𝑧 → ( 𝑦 ∈ ( 𝐾𝑇 ) ↔ 𝑧 ∈ ( 𝐾𝑇 ) ) )
170 168 169 imbi12d ( 𝑦 = 𝑧 → ( ( 𝑦𝐵𝑦 ∈ ( 𝐾𝑇 ) ) ↔ ( 𝑧𝐵𝑧 ∈ ( 𝐾𝑇 ) ) ) )
171 eleq1w ( 𝑦 = 𝑥 → ( 𝑦𝐵𝑥𝐵 ) )
172 eleq1w ( 𝑦 = 𝑥 → ( 𝑦 ∈ ( 𝐾𝑇 ) ↔ 𝑥 ∈ ( 𝐾𝑇 ) ) )
173 171 172 imbi12d ( 𝑦 = 𝑥 → ( ( 𝑦𝐵𝑦 ∈ ( 𝐾𝑇 ) ) ↔ ( 𝑥𝐵𝑥 ∈ ( 𝐾𝑇 ) ) ) )
174 difeq1 ( 𝑦 = 𝑧 → ( 𝑦 ∖ I ) = ( 𝑧 ∖ I ) )
175 174 dmeqd ( 𝑦 = 𝑧 → dom ( 𝑦 ∖ I ) = dom ( 𝑧 ∖ I ) )
176 difeq1 ( 𝑦 = 𝑥 → ( 𝑦 ∖ I ) = ( 𝑥 ∖ I ) )
177 176 dmeqd ( 𝑦 = 𝑥 → dom ( 𝑦 ∖ I ) = dom ( 𝑥 ∖ I ) )
178 32 33 167 170 173 175 177 indcardi ( dom ( 𝑥 ∖ I ) ∈ Fin → ( 𝑥𝐵𝑥 ∈ ( 𝐾𝑇 ) ) )
179 178 impcom ( ( 𝑥𝐵 ∧ dom ( 𝑥 ∖ I ) ∈ Fin ) → 𝑥 ∈ ( 𝐾𝑇 ) )
180 179 3adant1 ( ( 𝐷𝑉𝑥𝐵 ∧ dom ( 𝑥 ∖ I ) ∈ Fin ) → 𝑥 ∈ ( 𝐾𝑇 ) )
181 180 rabssdv ( 𝐷𝑉 → { 𝑥𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ⊆ ( 𝐾𝑇 ) )
182 30 181 eqssd ( 𝐷𝑉 → ( 𝐾𝑇 ) = { 𝑥𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } )