Metamath Proof Explorer


Theorem symggen2

Description: A finite permutation group is generated by the transpositions, see also Theorem 3.4 in Rotman p. 31. (Contributed by Stefan O'Rear, 28-Aug-2015)

Ref Expression
Hypotheses symgtrf.t 𝑇 = ran ( pmTrsp ‘ 𝐷 )
symgtrf.g 𝐺 = ( SymGrp ‘ 𝐷 )
symgtrf.b 𝐵 = ( Base ‘ 𝐺 )
symggen.k 𝐾 = ( mrCls ‘ ( SubMnd ‘ 𝐺 ) )
Assertion symggen2 ( 𝐷 ∈ Fin → ( 𝐾𝑇 ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 symgtrf.t 𝑇 = ran ( pmTrsp ‘ 𝐷 )
2 symgtrf.g 𝐺 = ( SymGrp ‘ 𝐷 )
3 symgtrf.b 𝐵 = ( Base ‘ 𝐺 )
4 symggen.k 𝐾 = ( mrCls ‘ ( SubMnd ‘ 𝐺 ) )
5 1 2 3 4 symggen ( 𝐷 ∈ Fin → ( 𝐾𝑇 ) = { 𝑥𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } )
6 difss ( 𝑥 ∖ I ) ⊆ 𝑥
7 dmss ( ( 𝑥 ∖ I ) ⊆ 𝑥 → dom ( 𝑥 ∖ I ) ⊆ dom 𝑥 )
8 6 7 ax-mp dom ( 𝑥 ∖ I ) ⊆ dom 𝑥
9 2 3 symgbasf1o ( 𝑥𝐵𝑥 : 𝐷1-1-onto𝐷 )
10 f1odm ( 𝑥 : 𝐷1-1-onto𝐷 → dom 𝑥 = 𝐷 )
11 9 10 syl ( 𝑥𝐵 → dom 𝑥 = 𝐷 )
12 8 11 sseqtrid ( 𝑥𝐵 → dom ( 𝑥 ∖ I ) ⊆ 𝐷 )
13 ssfi ( ( 𝐷 ∈ Fin ∧ dom ( 𝑥 ∖ I ) ⊆ 𝐷 ) → dom ( 𝑥 ∖ I ) ∈ Fin )
14 12 13 sylan2 ( ( 𝐷 ∈ Fin ∧ 𝑥𝐵 ) → dom ( 𝑥 ∖ I ) ∈ Fin )
15 14 ralrimiva ( 𝐷 ∈ Fin → ∀ 𝑥𝐵 dom ( 𝑥 ∖ I ) ∈ Fin )
16 rabid2 ( 𝐵 = { 𝑥𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ↔ ∀ 𝑥𝐵 dom ( 𝑥 ∖ I ) ∈ Fin )
17 15 16 sylibr ( 𝐷 ∈ Fin → 𝐵 = { 𝑥𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } )
18 5 17 eqtr4d ( 𝐷 ∈ Fin → ( 𝐾𝑇 ) = 𝐵 )