Step |
Hyp |
Ref |
Expression |
1 |
|
symgtrf.t |
⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) |
2 |
|
symgtrf.g |
⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) |
3 |
|
symgtrf.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
4 |
|
symggen.k |
⊢ 𝐾 = ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) |
5 |
1 2 3 4
|
symggen |
⊢ ( 𝐷 ∈ Fin → ( 𝐾 ‘ 𝑇 ) = { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ) |
6 |
|
difss |
⊢ ( 𝑥 ∖ I ) ⊆ 𝑥 |
7 |
|
dmss |
⊢ ( ( 𝑥 ∖ I ) ⊆ 𝑥 → dom ( 𝑥 ∖ I ) ⊆ dom 𝑥 ) |
8 |
6 7
|
ax-mp |
⊢ dom ( 𝑥 ∖ I ) ⊆ dom 𝑥 |
9 |
2 3
|
symgbasf1o |
⊢ ( 𝑥 ∈ 𝐵 → 𝑥 : 𝐷 –1-1-onto→ 𝐷 ) |
10 |
|
f1odm |
⊢ ( 𝑥 : 𝐷 –1-1-onto→ 𝐷 → dom 𝑥 = 𝐷 ) |
11 |
9 10
|
syl |
⊢ ( 𝑥 ∈ 𝐵 → dom 𝑥 = 𝐷 ) |
12 |
8 11
|
sseqtrid |
⊢ ( 𝑥 ∈ 𝐵 → dom ( 𝑥 ∖ I ) ⊆ 𝐷 ) |
13 |
|
ssfi |
⊢ ( ( 𝐷 ∈ Fin ∧ dom ( 𝑥 ∖ I ) ⊆ 𝐷 ) → dom ( 𝑥 ∖ I ) ∈ Fin ) |
14 |
12 13
|
sylan2 |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑥 ∈ 𝐵 ) → dom ( 𝑥 ∖ I ) ∈ Fin ) |
15 |
14
|
ralrimiva |
⊢ ( 𝐷 ∈ Fin → ∀ 𝑥 ∈ 𝐵 dom ( 𝑥 ∖ I ) ∈ Fin ) |
16 |
|
rabid2 |
⊢ ( 𝐵 = { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ↔ ∀ 𝑥 ∈ 𝐵 dom ( 𝑥 ∖ I ) ∈ Fin ) |
17 |
15 16
|
sylibr |
⊢ ( 𝐷 ∈ Fin → 𝐵 = { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ) |
18 |
5 17
|
eqtr4d |
⊢ ( 𝐷 ∈ Fin → ( 𝐾 ‘ 𝑇 ) = 𝐵 ) |