| Step |
Hyp |
Ref |
Expression |
| 1 |
|
symggrp.1 |
⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) |
| 2 |
|
eqidd |
⊢ ( 𝐴 ∈ 𝑉 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) |
| 3 |
|
eqidd |
⊢ ( 𝐴 ∈ 𝑉 → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) ) |
| 4 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 5 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 6 |
1 4 5
|
symgcl |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
| 7 |
6
|
3adant1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
| 8 |
1 4 5
|
symgcl |
⊢ ( ( 𝑓 ∈ ( Base ‘ 𝐺 ) ∧ 𝑔 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑓 ( +g ‘ 𝐺 ) 𝑔 ) ∈ ( Base ‘ 𝐺 ) ) |
| 9 |
1 4 5
|
symgov |
⊢ ( ( 𝑓 ∈ ( Base ‘ 𝐺 ) ∧ 𝑔 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑓 ( +g ‘ 𝐺 ) 𝑔 ) = ( 𝑓 ∘ 𝑔 ) ) |
| 10 |
8 9
|
symggrplem |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 11 |
10
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 12 |
1
|
idresperm |
⊢ ( 𝐴 ∈ 𝑉 → ( I ↾ 𝐴 ) ∈ ( Base ‘ 𝐺 ) ) |
| 13 |
1 4 5
|
symgov |
⊢ ( ( ( I ↾ 𝐴 ) ∈ ( Base ‘ 𝐺 ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( I ↾ 𝐴 ) ( +g ‘ 𝐺 ) 𝑥 ) = ( ( I ↾ 𝐴 ) ∘ 𝑥 ) ) |
| 14 |
12 13
|
sylan |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( I ↾ 𝐴 ) ( +g ‘ 𝐺 ) 𝑥 ) = ( ( I ↾ 𝐴 ) ∘ 𝑥 ) ) |
| 15 |
1 4
|
elsymgbas |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↔ 𝑥 : 𝐴 –1-1-onto→ 𝐴 ) ) |
| 16 |
15
|
biimpa |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → 𝑥 : 𝐴 –1-1-onto→ 𝐴 ) |
| 17 |
|
f1of |
⊢ ( 𝑥 : 𝐴 –1-1-onto→ 𝐴 → 𝑥 : 𝐴 ⟶ 𝐴 ) |
| 18 |
|
fcoi2 |
⊢ ( 𝑥 : 𝐴 ⟶ 𝐴 → ( ( I ↾ 𝐴 ) ∘ 𝑥 ) = 𝑥 ) |
| 19 |
16 17 18
|
3syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( I ↾ 𝐴 ) ∘ 𝑥 ) = 𝑥 ) |
| 20 |
14 19
|
eqtrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( I ↾ 𝐴 ) ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ) |
| 21 |
|
f1ocnv |
⊢ ( 𝑥 : 𝐴 –1-1-onto→ 𝐴 → ◡ 𝑥 : 𝐴 –1-1-onto→ 𝐴 ) |
| 22 |
21
|
a1i |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 : 𝐴 –1-1-onto→ 𝐴 → ◡ 𝑥 : 𝐴 –1-1-onto→ 𝐴 ) ) |
| 23 |
1 4
|
elsymgbas |
⊢ ( 𝐴 ∈ 𝑉 → ( ◡ 𝑥 ∈ ( Base ‘ 𝐺 ) ↔ ◡ 𝑥 : 𝐴 –1-1-onto→ 𝐴 ) ) |
| 24 |
22 15 23
|
3imtr4d |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( Base ‘ 𝐺 ) → ◡ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ) |
| 25 |
24
|
imp |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ◡ 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
| 26 |
1 4 5
|
symgov |
⊢ ( ( ◡ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ◡ 𝑥 ( +g ‘ 𝐺 ) 𝑥 ) = ( ◡ 𝑥 ∘ 𝑥 ) ) |
| 27 |
25 26
|
sylancom |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ◡ 𝑥 ( +g ‘ 𝐺 ) 𝑥 ) = ( ◡ 𝑥 ∘ 𝑥 ) ) |
| 28 |
|
f1ococnv1 |
⊢ ( 𝑥 : 𝐴 –1-1-onto→ 𝐴 → ( ◡ 𝑥 ∘ 𝑥 ) = ( I ↾ 𝐴 ) ) |
| 29 |
16 28
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ◡ 𝑥 ∘ 𝑥 ) = ( I ↾ 𝐴 ) ) |
| 30 |
27 29
|
eqtrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ◡ 𝑥 ( +g ‘ 𝐺 ) 𝑥 ) = ( I ↾ 𝐴 ) ) |
| 31 |
2 3 7 11 12 20 25 30
|
isgrpd |
⊢ ( 𝐴 ∈ 𝑉 → 𝐺 ∈ Grp ) |