| Step |
Hyp |
Ref |
Expression |
| 1 |
|
symggrplem.c |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
| 2 |
|
symggrplem.p |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) = ( 𝑥 ∘ 𝑦 ) ) |
| 3 |
|
coass |
⊢ ( ( 𝑋 ∘ 𝑌 ) ∘ 𝑍 ) = ( 𝑋 ∘ ( 𝑌 ∘ 𝑍 ) ) |
| 4 |
|
oveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 + 𝑦 ) = ( 𝑋 + 𝑦 ) ) |
| 5 |
4
|
eleq1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ↔ ( 𝑋 + 𝑦 ) ∈ 𝐵 ) ) |
| 6 |
|
oveq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 + 𝑦 ) = ( 𝑋 + 𝑌 ) ) |
| 7 |
6
|
eleq1d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 + 𝑦 ) ∈ 𝐵 ↔ ( 𝑋 + 𝑌 ) ∈ 𝐵 ) ) |
| 8 |
5 7 1
|
vtocl2ga |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
| 9 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑋 + 𝑌 ) → ( 𝑥 + 𝑦 ) = ( ( 𝑋 + 𝑌 ) + 𝑦 ) ) |
| 10 |
|
coeq1 |
⊢ ( 𝑥 = ( 𝑋 + 𝑌 ) → ( 𝑥 ∘ 𝑦 ) = ( ( 𝑋 + 𝑌 ) ∘ 𝑦 ) ) |
| 11 |
9 10
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑋 + 𝑌 ) → ( ( 𝑥 + 𝑦 ) = ( 𝑥 ∘ 𝑦 ) ↔ ( ( 𝑋 + 𝑌 ) + 𝑦 ) = ( ( 𝑋 + 𝑌 ) ∘ 𝑦 ) ) ) |
| 12 |
|
oveq2 |
⊢ ( 𝑦 = 𝑍 → ( ( 𝑋 + 𝑌 ) + 𝑦 ) = ( ( 𝑋 + 𝑌 ) + 𝑍 ) ) |
| 13 |
|
coeq2 |
⊢ ( 𝑦 = 𝑍 → ( ( 𝑋 + 𝑌 ) ∘ 𝑦 ) = ( ( 𝑋 + 𝑌 ) ∘ 𝑍 ) ) |
| 14 |
12 13
|
eqeq12d |
⊢ ( 𝑦 = 𝑍 → ( ( ( 𝑋 + 𝑌 ) + 𝑦 ) = ( ( 𝑋 + 𝑌 ) ∘ 𝑦 ) ↔ ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( ( 𝑋 + 𝑌 ) ∘ 𝑍 ) ) ) |
| 15 |
11 14 2
|
vtocl2ga |
⊢ ( ( ( 𝑋 + 𝑌 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( ( 𝑋 + 𝑌 ) ∘ 𝑍 ) ) |
| 16 |
8 15
|
stoic3 |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( ( 𝑋 + 𝑌 ) ∘ 𝑍 ) ) |
| 17 |
|
coeq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∘ 𝑦 ) = ( 𝑋 ∘ 𝑦 ) ) |
| 18 |
4 17
|
eqeq12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 + 𝑦 ) = ( 𝑥 ∘ 𝑦 ) ↔ ( 𝑋 + 𝑦 ) = ( 𝑋 ∘ 𝑦 ) ) ) |
| 19 |
|
coeq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 ∘ 𝑦 ) = ( 𝑋 ∘ 𝑌 ) ) |
| 20 |
6 19
|
eqeq12d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 + 𝑦 ) = ( 𝑋 ∘ 𝑦 ) ↔ ( 𝑋 + 𝑌 ) = ( 𝑋 ∘ 𝑌 ) ) ) |
| 21 |
18 20 2
|
vtocl2ga |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) = ( 𝑋 ∘ 𝑌 ) ) |
| 22 |
21
|
3adant3 |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) = ( 𝑋 ∘ 𝑌 ) ) |
| 23 |
22
|
coeq1d |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝑋 + 𝑌 ) ∘ 𝑍 ) = ( ( 𝑋 ∘ 𝑌 ) ∘ 𝑍 ) ) |
| 24 |
16 23
|
eqtrd |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( ( 𝑋 ∘ 𝑌 ) ∘ 𝑍 ) ) |
| 25 |
|
simp1 |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
| 26 |
|
oveq1 |
⊢ ( 𝑥 = 𝑌 → ( 𝑥 + 𝑦 ) = ( 𝑌 + 𝑦 ) ) |
| 27 |
26
|
eleq1d |
⊢ ( 𝑥 = 𝑌 → ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ↔ ( 𝑌 + 𝑦 ) ∈ 𝐵 ) ) |
| 28 |
|
oveq2 |
⊢ ( 𝑦 = 𝑍 → ( 𝑌 + 𝑦 ) = ( 𝑌 + 𝑍 ) ) |
| 29 |
28
|
eleq1d |
⊢ ( 𝑦 = 𝑍 → ( ( 𝑌 + 𝑦 ) ∈ 𝐵 ↔ ( 𝑌 + 𝑍 ) ∈ 𝐵 ) ) |
| 30 |
27 29 1
|
vtocl2ga |
⊢ ( ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 + 𝑍 ) ∈ 𝐵 ) |
| 31 |
30
|
3adant1 |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 + 𝑍 ) ∈ 𝐵 ) |
| 32 |
|
oveq2 |
⊢ ( 𝑦 = ( 𝑌 + 𝑍 ) → ( 𝑋 + 𝑦 ) = ( 𝑋 + ( 𝑌 + 𝑍 ) ) ) |
| 33 |
|
coeq2 |
⊢ ( 𝑦 = ( 𝑌 + 𝑍 ) → ( 𝑋 ∘ 𝑦 ) = ( 𝑋 ∘ ( 𝑌 + 𝑍 ) ) ) |
| 34 |
32 33
|
eqeq12d |
⊢ ( 𝑦 = ( 𝑌 + 𝑍 ) → ( ( 𝑋 + 𝑦 ) = ( 𝑋 ∘ 𝑦 ) ↔ ( 𝑋 + ( 𝑌 + 𝑍 ) ) = ( 𝑋 ∘ ( 𝑌 + 𝑍 ) ) ) ) |
| 35 |
18 34 2
|
vtocl2ga |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ ( 𝑌 + 𝑍 ) ∈ 𝐵 ) → ( 𝑋 + ( 𝑌 + 𝑍 ) ) = ( 𝑋 ∘ ( 𝑌 + 𝑍 ) ) ) |
| 36 |
25 31 35
|
syl2anc |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 + ( 𝑌 + 𝑍 ) ) = ( 𝑋 ∘ ( 𝑌 + 𝑍 ) ) ) |
| 37 |
|
coeq1 |
⊢ ( 𝑥 = 𝑌 → ( 𝑥 ∘ 𝑦 ) = ( 𝑌 ∘ 𝑦 ) ) |
| 38 |
26 37
|
eqeq12d |
⊢ ( 𝑥 = 𝑌 → ( ( 𝑥 + 𝑦 ) = ( 𝑥 ∘ 𝑦 ) ↔ ( 𝑌 + 𝑦 ) = ( 𝑌 ∘ 𝑦 ) ) ) |
| 39 |
|
coeq2 |
⊢ ( 𝑦 = 𝑍 → ( 𝑌 ∘ 𝑦 ) = ( 𝑌 ∘ 𝑍 ) ) |
| 40 |
28 39
|
eqeq12d |
⊢ ( 𝑦 = 𝑍 → ( ( 𝑌 + 𝑦 ) = ( 𝑌 ∘ 𝑦 ) ↔ ( 𝑌 + 𝑍 ) = ( 𝑌 ∘ 𝑍 ) ) ) |
| 41 |
38 40 2
|
vtocl2ga |
⊢ ( ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 + 𝑍 ) = ( 𝑌 ∘ 𝑍 ) ) |
| 42 |
41
|
3adant1 |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 + 𝑍 ) = ( 𝑌 ∘ 𝑍 ) ) |
| 43 |
42
|
coeq2d |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 ∘ ( 𝑌 + 𝑍 ) ) = ( 𝑋 ∘ ( 𝑌 ∘ 𝑍 ) ) ) |
| 44 |
36 43
|
eqtrd |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 + ( 𝑌 + 𝑍 ) ) = ( 𝑋 ∘ ( 𝑌 ∘ 𝑍 ) ) ) |
| 45 |
3 24 44
|
3eqtr4a |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( 𝑋 + ( 𝑌 + 𝑍 ) ) ) |