Metamath Proof Explorer


Theorem symghash

Description: The symmetric group on n objects has cardinality n ! . (Contributed by Mario Carneiro, 22-Jan-2015)

Ref Expression
Hypotheses symgbas.1 𝐺 = ( SymGrp ‘ 𝐴 )
symgbas.2 𝐵 = ( Base ‘ 𝐺 )
Assertion symghash ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐵 ) = ( ! ‘ ( ♯ ‘ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 symgbas.1 𝐺 = ( SymGrp ‘ 𝐴 )
2 symgbas.2 𝐵 = ( Base ‘ 𝐺 )
3 1 2 symgbas 𝐵 = { 𝑓𝑓 : 𝐴1-1-onto𝐴 }
4 3 fveq2i ( ♯ ‘ 𝐵 ) = ( ♯ ‘ { 𝑓𝑓 : 𝐴1-1-onto𝐴 } )
5 hashfac ( 𝐴 ∈ Fin → ( ♯ ‘ { 𝑓𝑓 : 𝐴1-1-onto𝐴 } ) = ( ! ‘ ( ♯ ‘ 𝐴 ) ) )
6 4 5 eqtrid ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐵 ) = ( ! ‘ ( ♯ ‘ 𝐴 ) ) )