Description: The symmetric group on n objects has cardinality n ! . (Contributed by Mario Carneiro, 22-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgbas.1 | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
| symgbas.2 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| Assertion | symghash | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐵 ) = ( ! ‘ ( ♯ ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgbas.1 | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
| 2 | symgbas.2 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 3 | 1 2 | symgbas | ⊢ 𝐵 = { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } |
| 4 | 3 | fveq2i | ⊢ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } ) |
| 5 | hashfac | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } ) = ( ! ‘ ( ♯ ‘ 𝐴 ) ) ) | |
| 6 | 4 5 | eqtrid | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐵 ) = ( ! ‘ ( ♯ ‘ 𝐴 ) ) ) |