Step |
Hyp |
Ref |
Expression |
1 |
|
symggrp.1 |
⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) |
2 |
|
eqid |
⊢ ( EndoFMnd ‘ 𝐴 ) = ( EndoFMnd ‘ 𝐴 ) |
3 |
2
|
efmndid |
⊢ ( 𝐴 ∈ 𝑉 → ( I ↾ 𝐴 ) = ( 0g ‘ ( EndoFMnd ‘ 𝐴 ) ) ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
5 |
2 1 4
|
symgsubmefmnd |
⊢ ( 𝐴 ∈ 𝑉 → ( Base ‘ 𝐺 ) ∈ ( SubMnd ‘ ( EndoFMnd ‘ 𝐴 ) ) ) |
6 |
1 4 2
|
symgressbas |
⊢ 𝐺 = ( ( EndoFMnd ‘ 𝐴 ) ↾s ( Base ‘ 𝐺 ) ) |
7 |
|
eqid |
⊢ ( 0g ‘ ( EndoFMnd ‘ 𝐴 ) ) = ( 0g ‘ ( EndoFMnd ‘ 𝐴 ) ) |
8 |
6 7
|
subm0 |
⊢ ( ( Base ‘ 𝐺 ) ∈ ( SubMnd ‘ ( EndoFMnd ‘ 𝐴 ) ) → ( 0g ‘ ( EndoFMnd ‘ 𝐴 ) ) = ( 0g ‘ 𝐺 ) ) |
9 |
5 8
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ( 0g ‘ ( EndoFMnd ‘ 𝐴 ) ) = ( 0g ‘ 𝐺 ) ) |
10 |
3 9
|
eqtrd |
⊢ ( 𝐴 ∈ 𝑉 → ( I ↾ 𝐴 ) = ( 0g ‘ 𝐺 ) ) |