| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							symggrp.1 | 
							⊢ 𝐺  =  ( SymGrp ‘ 𝐴 )  | 
						
						
							| 2 | 
							
								
							 | 
							eqid | 
							⊢ ( EndoFMnd ‘ 𝐴 )  =  ( EndoFMnd ‘ 𝐴 )  | 
						
						
							| 3 | 
							
								2
							 | 
							efmndid | 
							⊢ ( 𝐴  ∈  𝑉  →  (  I   ↾  𝐴 )  =  ( 0g ‘ ( EndoFMnd ‘ 𝐴 ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 )  | 
						
						
							| 5 | 
							
								2 1 4
							 | 
							symgsubmefmnd | 
							⊢ ( 𝐴  ∈  𝑉  →  ( Base ‘ 𝐺 )  ∈  ( SubMnd ‘ ( EndoFMnd ‘ 𝐴 ) ) )  | 
						
						
							| 6 | 
							
								1 4 2
							 | 
							symgressbas | 
							⊢ 𝐺  =  ( ( EndoFMnd ‘ 𝐴 )  ↾s  ( Base ‘ 𝐺 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							⊢ ( 0g ‘ ( EndoFMnd ‘ 𝐴 ) )  =  ( 0g ‘ ( EndoFMnd ‘ 𝐴 ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							subm0 | 
							⊢ ( ( Base ‘ 𝐺 )  ∈  ( SubMnd ‘ ( EndoFMnd ‘ 𝐴 ) )  →  ( 0g ‘ ( EndoFMnd ‘ 𝐴 ) )  =  ( 0g ‘ 𝐺 ) )  | 
						
						
							| 9 | 
							
								5 8
							 | 
							syl | 
							⊢ ( 𝐴  ∈  𝑉  →  ( 0g ‘ ( EndoFMnd ‘ 𝐴 ) )  =  ( 0g ‘ 𝐺 ) )  | 
						
						
							| 10 | 
							
								3 9
							 | 
							eqtrd | 
							⊢ ( 𝐴  ∈  𝑉  →  (  I   ↾  𝐴 )  =  ( 0g ‘ 𝐺 ) )  |