Step |
Hyp |
Ref |
Expression |
1 |
|
symggrp.1 |
⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) |
2 |
|
symginv.2 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
3 |
|
symginv.3 |
⊢ 𝑁 = ( invg ‘ 𝐺 ) |
4 |
1 2
|
elsymgbas2 |
⊢ ( 𝐹 ∈ 𝐵 → ( 𝐹 ∈ 𝐵 ↔ 𝐹 : 𝐴 –1-1-onto→ 𝐴 ) ) |
5 |
4
|
ibi |
⊢ ( 𝐹 ∈ 𝐵 → 𝐹 : 𝐴 –1-1-onto→ 𝐴 ) |
6 |
|
f1ocnv |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐴 ) |
7 |
5 6
|
syl |
⊢ ( 𝐹 ∈ 𝐵 → ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐴 ) |
8 |
|
cnvexg |
⊢ ( 𝐹 ∈ 𝐵 → ◡ 𝐹 ∈ V ) |
9 |
1 2
|
elsymgbas2 |
⊢ ( ◡ 𝐹 ∈ V → ( ◡ 𝐹 ∈ 𝐵 ↔ ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐴 ) ) |
10 |
8 9
|
syl |
⊢ ( 𝐹 ∈ 𝐵 → ( ◡ 𝐹 ∈ 𝐵 ↔ ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐴 ) ) |
11 |
7 10
|
mpbird |
⊢ ( 𝐹 ∈ 𝐵 → ◡ 𝐹 ∈ 𝐵 ) |
12 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
13 |
1 2 12
|
symgov |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ ◡ 𝐹 ∈ 𝐵 ) → ( 𝐹 ( +g ‘ 𝐺 ) ◡ 𝐹 ) = ( 𝐹 ∘ ◡ 𝐹 ) ) |
14 |
11 13
|
mpdan |
⊢ ( 𝐹 ∈ 𝐵 → ( 𝐹 ( +g ‘ 𝐺 ) ◡ 𝐹 ) = ( 𝐹 ∘ ◡ 𝐹 ) ) |
15 |
|
f1ococnv2 |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → ( 𝐹 ∘ ◡ 𝐹 ) = ( I ↾ 𝐴 ) ) |
16 |
5 15
|
syl |
⊢ ( 𝐹 ∈ 𝐵 → ( 𝐹 ∘ ◡ 𝐹 ) = ( I ↾ 𝐴 ) ) |
17 |
1 2
|
elbasfv |
⊢ ( 𝐹 ∈ 𝐵 → 𝐴 ∈ V ) |
18 |
1
|
symgid |
⊢ ( 𝐴 ∈ V → ( I ↾ 𝐴 ) = ( 0g ‘ 𝐺 ) ) |
19 |
17 18
|
syl |
⊢ ( 𝐹 ∈ 𝐵 → ( I ↾ 𝐴 ) = ( 0g ‘ 𝐺 ) ) |
20 |
14 16 19
|
3eqtrd |
⊢ ( 𝐹 ∈ 𝐵 → ( 𝐹 ( +g ‘ 𝐺 ) ◡ 𝐹 ) = ( 0g ‘ 𝐺 ) ) |
21 |
1
|
symggrp |
⊢ ( 𝐴 ∈ V → 𝐺 ∈ Grp ) |
22 |
17 21
|
syl |
⊢ ( 𝐹 ∈ 𝐵 → 𝐺 ∈ Grp ) |
23 |
|
id |
⊢ ( 𝐹 ∈ 𝐵 → 𝐹 ∈ 𝐵 ) |
24 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
25 |
2 12 24 3
|
grpinvid1 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐹 ∈ 𝐵 ∧ ◡ 𝐹 ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝐹 ) = ◡ 𝐹 ↔ ( 𝐹 ( +g ‘ 𝐺 ) ◡ 𝐹 ) = ( 0g ‘ 𝐺 ) ) ) |
26 |
22 23 11 25
|
syl3anc |
⊢ ( 𝐹 ∈ 𝐵 → ( ( 𝑁 ‘ 𝐹 ) = ◡ 𝐹 ↔ ( 𝐹 ( +g ‘ 𝐺 ) ◡ 𝐹 ) = ( 0g ‘ 𝐺 ) ) ) |
27 |
20 26
|
mpbird |
⊢ ( 𝐹 ∈ 𝐵 → ( 𝑁 ‘ 𝐹 ) = ◡ 𝐹 ) |