Metamath Proof Explorer


Theorem symgmov1

Description: For a permutation of a set, each element of the set replaces an(other) element of the set. (Contributed by AV, 2-Jan-2019)

Ref Expression
Hypothesis symgmov1.p 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) )
Assertion symgmov1 ( 𝑄𝑃 → ∀ 𝑛𝑁𝑘𝑁 ( 𝑄𝑛 ) = 𝑘 )

Proof

Step Hyp Ref Expression
1 symgmov1.p 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) )
2 eqid ( SymGrp ‘ 𝑁 ) = ( SymGrp ‘ 𝑁 )
3 2 1 symgfv ( ( 𝑄𝑃𝑛𝑁 ) → ( 𝑄𝑛 ) ∈ 𝑁 )
4 clel5 ( ( 𝑄𝑛 ) ∈ 𝑁 ↔ ∃ 𝑘𝑁 ( 𝑄𝑛 ) = 𝑘 )
5 3 4 sylib ( ( 𝑄𝑃𝑛𝑁 ) → ∃ 𝑘𝑁 ( 𝑄𝑛 ) = 𝑘 )
6 5 ralrimiva ( 𝑄𝑃 → ∀ 𝑛𝑁𝑘𝑁 ( 𝑄𝑛 ) = 𝑘 )