Description: For a permutation of a set, each element of the set replaces an(other) element of the set. (Contributed by AV, 2-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | symgmov1.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
| Assertion | symgmov1 | ⊢ ( 𝑄 ∈ 𝑃 → ∀ 𝑛 ∈ 𝑁 ∃ 𝑘 ∈ 𝑁 ( 𝑄 ‘ 𝑛 ) = 𝑘 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgmov1.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
| 2 | eqid | ⊢ ( SymGrp ‘ 𝑁 ) = ( SymGrp ‘ 𝑁 ) | |
| 3 | 2 1 | symgfv | ⊢ ( ( 𝑄 ∈ 𝑃 ∧ 𝑛 ∈ 𝑁 ) → ( 𝑄 ‘ 𝑛 ) ∈ 𝑁 ) |
| 4 | clel5 | ⊢ ( ( 𝑄 ‘ 𝑛 ) ∈ 𝑁 ↔ ∃ 𝑘 ∈ 𝑁 ( 𝑄 ‘ 𝑛 ) = 𝑘 ) | |
| 5 | 3 4 | sylib | ⊢ ( ( 𝑄 ∈ 𝑃 ∧ 𝑛 ∈ 𝑁 ) → ∃ 𝑘 ∈ 𝑁 ( 𝑄 ‘ 𝑛 ) = 𝑘 ) |
| 6 | 5 | ralrimiva | ⊢ ( 𝑄 ∈ 𝑃 → ∀ 𝑛 ∈ 𝑁 ∃ 𝑘 ∈ 𝑁 ( 𝑄 ‘ 𝑛 ) = 𝑘 ) |