Metamath Proof Explorer


Theorem symgmov2

Description: For a permutation of a set, each element of the set is replaced by an(other) element of the set. (Contributed by AV, 2-Jan-2019)

Ref Expression
Hypothesis symgmov1.p 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) )
Assertion symgmov2 ( 𝑄𝑃 → ∀ 𝑛𝑁𝑘𝑁 ( 𝑄𝑘 ) = 𝑛 )

Proof

Step Hyp Ref Expression
1 symgmov1.p 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) )
2 eqid ( SymGrp ‘ 𝑁 ) = ( SymGrp ‘ 𝑁 )
3 2 1 symgbasf1o ( 𝑄𝑃𝑄 : 𝑁1-1-onto𝑁 )
4 f1ofo ( 𝑄 : 𝑁1-1-onto𝑁𝑄 : 𝑁onto𝑁 )
5 foelrni ( ( 𝑄 : 𝑁onto𝑁𝑛𝑁 ) → ∃ 𝑘𝑁 ( 𝑄𝑘 ) = 𝑛 )
6 5 ralrimiva ( 𝑄 : 𝑁onto𝑁 → ∀ 𝑛𝑁𝑘𝑁 ( 𝑄𝑘 ) = 𝑛 )
7 3 4 6 3syl ( 𝑄𝑃 → ∀ 𝑛𝑁𝑘𝑁 ( 𝑄𝑘 ) = 𝑛 )