Step |
Hyp |
Ref |
Expression |
1 |
|
symgov.1 |
⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) |
2 |
|
symgov.2 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
3 |
|
symgov.3 |
⊢ + = ( +g ‘ 𝐺 ) |
4 |
|
eqid |
⊢ ( 𝐴 ↑m 𝐴 ) = ( 𝐴 ↑m 𝐴 ) |
5 |
1 4 3
|
symgplusg |
⊢ + = ( 𝑓 ∈ ( 𝐴 ↑m 𝐴 ) , 𝑔 ∈ ( 𝐴 ↑m 𝐴 ) ↦ ( 𝑓 ∘ 𝑔 ) ) |
6 |
5
|
a1i |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → + = ( 𝑓 ∈ ( 𝐴 ↑m 𝐴 ) , 𝑔 ∈ ( 𝐴 ↑m 𝐴 ) ↦ ( 𝑓 ∘ 𝑔 ) ) ) |
7 |
|
simpl |
⊢ ( ( 𝑓 = 𝑋 ∧ 𝑔 = 𝑌 ) → 𝑓 = 𝑋 ) |
8 |
|
simpr |
⊢ ( ( 𝑓 = 𝑋 ∧ 𝑔 = 𝑌 ) → 𝑔 = 𝑌 ) |
9 |
7 8
|
coeq12d |
⊢ ( ( 𝑓 = 𝑋 ∧ 𝑔 = 𝑌 ) → ( 𝑓 ∘ 𝑔 ) = ( 𝑋 ∘ 𝑌 ) ) |
10 |
9
|
adantl |
⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑓 = 𝑋 ∧ 𝑔 = 𝑌 ) ) → ( 𝑓 ∘ 𝑔 ) = ( 𝑋 ∘ 𝑌 ) ) |
11 |
1 2
|
symgbasmap |
⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ ( 𝐴 ↑m 𝐴 ) ) |
12 |
11
|
adantr |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ ( 𝐴 ↑m 𝐴 ) ) |
13 |
1 2
|
symgbasmap |
⊢ ( 𝑌 ∈ 𝐵 → 𝑌 ∈ ( 𝐴 ↑m 𝐴 ) ) |
14 |
13
|
adantl |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ ( 𝐴 ↑m 𝐴 ) ) |
15 |
|
coexg |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∘ 𝑌 ) ∈ V ) |
16 |
6 10 12 14 15
|
ovmpod |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) = ( 𝑋 ∘ 𝑌 ) ) |