Step |
Hyp |
Ref |
Expression |
1 |
|
symgplusg.1 |
⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) |
2 |
|
symgplusg.2 |
⊢ 𝐵 = ( 𝐴 ↑m 𝐴 ) |
3 |
|
symgplusg.3 |
⊢ + = ( +g ‘ 𝐺 ) |
4 |
|
f1osetex |
⊢ { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } ∈ V |
5 |
|
eqid |
⊢ ( ( EndoFMnd ‘ 𝐴 ) ↾s { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } ) = ( ( EndoFMnd ‘ 𝐴 ) ↾s { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } ) |
6 |
|
eqid |
⊢ ( +g ‘ ( EndoFMnd ‘ 𝐴 ) ) = ( +g ‘ ( EndoFMnd ‘ 𝐴 ) ) |
7 |
5 6
|
ressplusg |
⊢ ( { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } ∈ V → ( +g ‘ ( EndoFMnd ‘ 𝐴 ) ) = ( +g ‘ ( ( EndoFMnd ‘ 𝐴 ) ↾s { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } ) ) ) |
8 |
4 7
|
ax-mp |
⊢ ( +g ‘ ( EndoFMnd ‘ 𝐴 ) ) = ( +g ‘ ( ( EndoFMnd ‘ 𝐴 ) ↾s { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } ) ) |
9 |
|
eqid |
⊢ { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } = { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } |
10 |
1 9
|
symgval |
⊢ 𝐺 = ( ( EndoFMnd ‘ 𝐴 ) ↾s { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } ) |
11 |
10
|
eqcomi |
⊢ ( ( EndoFMnd ‘ 𝐴 ) ↾s { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } ) = 𝐺 |
12 |
11
|
fveq2i |
⊢ ( +g ‘ ( ( EndoFMnd ‘ 𝐴 ) ↾s { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } ) ) = ( +g ‘ 𝐺 ) |
13 |
8 12
|
eqtri |
⊢ ( +g ‘ ( EndoFMnd ‘ 𝐴 ) ) = ( +g ‘ 𝐺 ) |
14 |
|
eqid |
⊢ ( EndoFMnd ‘ 𝐴 ) = ( EndoFMnd ‘ 𝐴 ) |
15 |
|
eqid |
⊢ ( Base ‘ ( EndoFMnd ‘ 𝐴 ) ) = ( Base ‘ ( EndoFMnd ‘ 𝐴 ) ) |
16 |
14 15
|
efmndbas |
⊢ ( Base ‘ ( EndoFMnd ‘ 𝐴 ) ) = ( 𝐴 ↑m 𝐴 ) |
17 |
2 16
|
eqtr4i |
⊢ 𝐵 = ( Base ‘ ( EndoFMnd ‘ 𝐴 ) ) |
18 |
14 17 6
|
efmndplusg |
⊢ ( +g ‘ ( EndoFMnd ‘ 𝐴 ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) |
19 |
3 13 18
|
3eqtr2i |
⊢ + = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) |