Metamath Proof Explorer


Theorem symgplusg

Description: The group operation of a symmetric group is the function composition. (Contributed by Paul Chapman, 25-Feb-2008) (Revised by Mario Carneiro, 28-Jan-2015) (Proof shortened by AV, 19-Feb-2024) (Revised by AV, 29-Mar-2024) (Proof shortened by AV, 14-Aug-2024)

Ref Expression
Hypotheses symgplusg.1 𝐺 = ( SymGrp ‘ 𝐴 )
symgplusg.2 𝐵 = ( 𝐴m 𝐴 )
symgplusg.3 + = ( +g𝐺 )
Assertion symgplusg + = ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑓𝑔 ) )

Proof

Step Hyp Ref Expression
1 symgplusg.1 𝐺 = ( SymGrp ‘ 𝐴 )
2 symgplusg.2 𝐵 = ( 𝐴m 𝐴 )
3 symgplusg.3 + = ( +g𝐺 )
4 f1osetex { 𝑓𝑓 : 𝐴1-1-onto𝐴 } ∈ V
5 eqid ( ( EndoFMnd ‘ 𝐴 ) ↾s { 𝑓𝑓 : 𝐴1-1-onto𝐴 } ) = ( ( EndoFMnd ‘ 𝐴 ) ↾s { 𝑓𝑓 : 𝐴1-1-onto𝐴 } )
6 eqid ( +g ‘ ( EndoFMnd ‘ 𝐴 ) ) = ( +g ‘ ( EndoFMnd ‘ 𝐴 ) )
7 5 6 ressplusg ( { 𝑓𝑓 : 𝐴1-1-onto𝐴 } ∈ V → ( +g ‘ ( EndoFMnd ‘ 𝐴 ) ) = ( +g ‘ ( ( EndoFMnd ‘ 𝐴 ) ↾s { 𝑓𝑓 : 𝐴1-1-onto𝐴 } ) ) )
8 4 7 ax-mp ( +g ‘ ( EndoFMnd ‘ 𝐴 ) ) = ( +g ‘ ( ( EndoFMnd ‘ 𝐴 ) ↾s { 𝑓𝑓 : 𝐴1-1-onto𝐴 } ) )
9 eqid { 𝑓𝑓 : 𝐴1-1-onto𝐴 } = { 𝑓𝑓 : 𝐴1-1-onto𝐴 }
10 1 9 symgval 𝐺 = ( ( EndoFMnd ‘ 𝐴 ) ↾s { 𝑓𝑓 : 𝐴1-1-onto𝐴 } )
11 10 eqcomi ( ( EndoFMnd ‘ 𝐴 ) ↾s { 𝑓𝑓 : 𝐴1-1-onto𝐴 } ) = 𝐺
12 11 fveq2i ( +g ‘ ( ( EndoFMnd ‘ 𝐴 ) ↾s { 𝑓𝑓 : 𝐴1-1-onto𝐴 } ) ) = ( +g𝐺 )
13 8 12 eqtri ( +g ‘ ( EndoFMnd ‘ 𝐴 ) ) = ( +g𝐺 )
14 eqid ( EndoFMnd ‘ 𝐴 ) = ( EndoFMnd ‘ 𝐴 )
15 eqid ( Base ‘ ( EndoFMnd ‘ 𝐴 ) ) = ( Base ‘ ( EndoFMnd ‘ 𝐴 ) )
16 14 15 efmndbas ( Base ‘ ( EndoFMnd ‘ 𝐴 ) ) = ( 𝐴m 𝐴 )
17 2 16 eqtr4i 𝐵 = ( Base ‘ ( EndoFMnd ‘ 𝐴 ) )
18 14 17 6 efmndplusg ( +g ‘ ( EndoFMnd ‘ 𝐴 ) ) = ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑓𝑔 ) )
19 3 13 18 3eqtr2i + = ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑓𝑔 ) )