Description: The symmetric group on A characterized as structure restriction of the monoid of endofunctions on A to its base set. (Contributed by AV, 30-Mar-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | symgbas.1 | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
symgbas.2 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
symgressbas.m | ⊢ 𝑀 = ( EndoFMnd ‘ 𝐴 ) | ||
Assertion | symgressbas | ⊢ 𝐺 = ( 𝑀 ↾s 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symgbas.1 | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
2 | symgbas.2 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
3 | symgressbas.m | ⊢ 𝑀 = ( EndoFMnd ‘ 𝐴 ) | |
4 | eqid | ⊢ { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } = { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } | |
5 | 1 4 | symgval | ⊢ 𝐺 = ( ( EndoFMnd ‘ 𝐴 ) ↾s { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } ) |
6 | 1 2 | symgbas | ⊢ 𝐵 = { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } |
7 | 3 6 | oveq12i | ⊢ ( 𝑀 ↾s 𝐵 ) = ( ( EndoFMnd ‘ 𝐴 ) ↾s { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } ) |
8 | 5 7 | eqtr4i | ⊢ 𝐺 = ( 𝑀 ↾s 𝐵 ) |