Metamath Proof Explorer


Theorem symgressbas

Description: The symmetric group on A characterized as structure restriction of the monoid of endofunctions on A to its base set. (Contributed by AV, 30-Mar-2024)

Ref Expression
Hypotheses symgbas.1 𝐺 = ( SymGrp ‘ 𝐴 )
symgbas.2 𝐵 = ( Base ‘ 𝐺 )
symgressbas.m 𝑀 = ( EndoFMnd ‘ 𝐴 )
Assertion symgressbas 𝐺 = ( 𝑀s 𝐵 )

Proof

Step Hyp Ref Expression
1 symgbas.1 𝐺 = ( SymGrp ‘ 𝐴 )
2 symgbas.2 𝐵 = ( Base ‘ 𝐺 )
3 symgressbas.m 𝑀 = ( EndoFMnd ‘ 𝐴 )
4 eqid { 𝑓𝑓 : 𝐴1-1-onto𝐴 } = { 𝑓𝑓 : 𝐴1-1-onto𝐴 }
5 1 4 symgval 𝐺 = ( ( EndoFMnd ‘ 𝐴 ) ↾s { 𝑓𝑓 : 𝐴1-1-onto𝐴 } )
6 1 2 symgbas 𝐵 = { 𝑓𝑓 : 𝐴1-1-onto𝐴 }
7 3 6 oveq12i ( 𝑀s 𝐵 ) = ( ( EndoFMnd ‘ 𝐴 ) ↾s { 𝑓𝑓 : 𝐴1-1-onto𝐴 } )
8 5 7 eqtr4i 𝐺 = ( 𝑀s 𝐵 )