| Step | Hyp | Ref | Expression | 
						
							| 1 |  | symgsssg.g | ⊢ 𝐺  =  ( SymGrp ‘ 𝐷 ) | 
						
							| 2 |  | symgsssg.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 3 |  | eqidd | ⊢ ( 𝐷  ∈  𝑉  →  ( 𝐺  ↾s  { 𝑥  ∈  𝐵  ∣  dom  ( 𝑥  ∖   I  )  ⊆  𝑋 } )  =  ( 𝐺  ↾s  { 𝑥  ∈  𝐵  ∣  dom  ( 𝑥  ∖   I  )  ⊆  𝑋 } ) ) | 
						
							| 4 |  | eqidd | ⊢ ( 𝐷  ∈  𝑉  →  ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 5 |  | eqidd | ⊢ ( 𝐷  ∈  𝑉  →  ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) ) | 
						
							| 6 |  | ssrab2 | ⊢ { 𝑥  ∈  𝐵  ∣  dom  ( 𝑥  ∖   I  )  ⊆  𝑋 }  ⊆  𝐵 | 
						
							| 7 | 6 2 | sseqtri | ⊢ { 𝑥  ∈  𝐵  ∣  dom  ( 𝑥  ∖   I  )  ⊆  𝑋 }  ⊆  ( Base ‘ 𝐺 ) | 
						
							| 8 | 7 | a1i | ⊢ ( 𝐷  ∈  𝑉  →  { 𝑥  ∈  𝐵  ∣  dom  ( 𝑥  ∖   I  )  ⊆  𝑋 }  ⊆  ( Base ‘ 𝐺 ) ) | 
						
							| 9 |  | difeq1 | ⊢ ( 𝑥  =  ( 0g ‘ 𝐺 )  →  ( 𝑥  ∖   I  )  =  ( ( 0g ‘ 𝐺 )  ∖   I  ) ) | 
						
							| 10 | 9 | dmeqd | ⊢ ( 𝑥  =  ( 0g ‘ 𝐺 )  →  dom  ( 𝑥  ∖   I  )  =  dom  ( ( 0g ‘ 𝐺 )  ∖   I  ) ) | 
						
							| 11 | 10 | sseq1d | ⊢ ( 𝑥  =  ( 0g ‘ 𝐺 )  →  ( dom  ( 𝑥  ∖   I  )  ⊆  𝑋  ↔  dom  ( ( 0g ‘ 𝐺 )  ∖   I  )  ⊆  𝑋 ) ) | 
						
							| 12 | 1 | symggrp | ⊢ ( 𝐷  ∈  𝑉  →  𝐺  ∈  Grp ) | 
						
							| 13 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 14 | 2 13 | grpidcl | ⊢ ( 𝐺  ∈  Grp  →  ( 0g ‘ 𝐺 )  ∈  𝐵 ) | 
						
							| 15 | 12 14 | syl | ⊢ ( 𝐷  ∈  𝑉  →  ( 0g ‘ 𝐺 )  ∈  𝐵 ) | 
						
							| 16 | 1 | symgid | ⊢ ( 𝐷  ∈  𝑉  →  (  I   ↾  𝐷 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 17 | 16 | difeq1d | ⊢ ( 𝐷  ∈  𝑉  →  ( (  I   ↾  𝐷 )  ∖   I  )  =  ( ( 0g ‘ 𝐺 )  ∖   I  ) ) | 
						
							| 18 | 17 | dmeqd | ⊢ ( 𝐷  ∈  𝑉  →  dom  ( (  I   ↾  𝐷 )  ∖   I  )  =  dom  ( ( 0g ‘ 𝐺 )  ∖   I  ) ) | 
						
							| 19 |  | resss | ⊢ (  I   ↾  𝐷 )  ⊆   I | 
						
							| 20 |  | ssdif0 | ⊢ ( (  I   ↾  𝐷 )  ⊆   I   ↔  ( (  I   ↾  𝐷 )  ∖   I  )  =  ∅ ) | 
						
							| 21 | 19 20 | mpbi | ⊢ ( (  I   ↾  𝐷 )  ∖   I  )  =  ∅ | 
						
							| 22 | 21 | dmeqi | ⊢ dom  ( (  I   ↾  𝐷 )  ∖   I  )  =  dom  ∅ | 
						
							| 23 |  | dm0 | ⊢ dom  ∅  =  ∅ | 
						
							| 24 | 22 23 | eqtri | ⊢ dom  ( (  I   ↾  𝐷 )  ∖   I  )  =  ∅ | 
						
							| 25 |  | 0ss | ⊢ ∅  ⊆  𝑋 | 
						
							| 26 | 24 25 | eqsstri | ⊢ dom  ( (  I   ↾  𝐷 )  ∖   I  )  ⊆  𝑋 | 
						
							| 27 | 18 26 | eqsstrrdi | ⊢ ( 𝐷  ∈  𝑉  →  dom  ( ( 0g ‘ 𝐺 )  ∖   I  )  ⊆  𝑋 ) | 
						
							| 28 | 11 15 27 | elrabd | ⊢ ( 𝐷  ∈  𝑉  →  ( 0g ‘ 𝐺 )  ∈  { 𝑥  ∈  𝐵  ∣  dom  ( 𝑥  ∖   I  )  ⊆  𝑋 } ) | 
						
							| 29 |  | biid | ⊢ ( 𝐷  ∈  𝑉  ↔  𝐷  ∈  𝑉 ) | 
						
							| 30 |  | difeq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ∖   I  )  =  ( 𝑦  ∖   I  ) ) | 
						
							| 31 | 30 | dmeqd | ⊢ ( 𝑥  =  𝑦  →  dom  ( 𝑥  ∖   I  )  =  dom  ( 𝑦  ∖   I  ) ) | 
						
							| 32 | 31 | sseq1d | ⊢ ( 𝑥  =  𝑦  →  ( dom  ( 𝑥  ∖   I  )  ⊆  𝑋  ↔  dom  ( 𝑦  ∖   I  )  ⊆  𝑋 ) ) | 
						
							| 33 | 32 | elrab | ⊢ ( 𝑦  ∈  { 𝑥  ∈  𝐵  ∣  dom  ( 𝑥  ∖   I  )  ⊆  𝑋 }  ↔  ( 𝑦  ∈  𝐵  ∧  dom  ( 𝑦  ∖   I  )  ⊆  𝑋 ) ) | 
						
							| 34 |  | difeq1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  ∖   I  )  =  ( 𝑧  ∖   I  ) ) | 
						
							| 35 | 34 | dmeqd | ⊢ ( 𝑥  =  𝑧  →  dom  ( 𝑥  ∖   I  )  =  dom  ( 𝑧  ∖   I  ) ) | 
						
							| 36 | 35 | sseq1d | ⊢ ( 𝑥  =  𝑧  →  ( dom  ( 𝑥  ∖   I  )  ⊆  𝑋  ↔  dom  ( 𝑧  ∖   I  )  ⊆  𝑋 ) ) | 
						
							| 37 | 36 | elrab | ⊢ ( 𝑧  ∈  { 𝑥  ∈  𝐵  ∣  dom  ( 𝑥  ∖   I  )  ⊆  𝑋 }  ↔  ( 𝑧  ∈  𝐵  ∧  dom  ( 𝑧  ∖   I  )  ⊆  𝑋 ) ) | 
						
							| 38 |  | difeq1 | ⊢ ( 𝑥  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  →  ( 𝑥  ∖   I  )  =  ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∖   I  ) ) | 
						
							| 39 | 38 | dmeqd | ⊢ ( 𝑥  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  →  dom  ( 𝑥  ∖   I  )  =  dom  ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∖   I  ) ) | 
						
							| 40 | 39 | sseq1d | ⊢ ( 𝑥  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  →  ( dom  ( 𝑥  ∖   I  )  ⊆  𝑋  ↔  dom  ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∖   I  )  ⊆  𝑋 ) ) | 
						
							| 41 | 12 | 3ad2ant1 | ⊢ ( ( 𝐷  ∈  𝑉  ∧  ( 𝑦  ∈  𝐵  ∧  dom  ( 𝑦  ∖   I  )  ⊆  𝑋 )  ∧  ( 𝑧  ∈  𝐵  ∧  dom  ( 𝑧  ∖   I  )  ⊆  𝑋 ) )  →  𝐺  ∈  Grp ) | 
						
							| 42 |  | simp2l | ⊢ ( ( 𝐷  ∈  𝑉  ∧  ( 𝑦  ∈  𝐵  ∧  dom  ( 𝑦  ∖   I  )  ⊆  𝑋 )  ∧  ( 𝑧  ∈  𝐵  ∧  dom  ( 𝑧  ∖   I  )  ⊆  𝑋 ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 43 |  | simp3l | ⊢ ( ( 𝐷  ∈  𝑉  ∧  ( 𝑦  ∈  𝐵  ∧  dom  ( 𝑦  ∖   I  )  ⊆  𝑋 )  ∧  ( 𝑧  ∈  𝐵  ∧  dom  ( 𝑧  ∖   I  )  ⊆  𝑋 ) )  →  𝑧  ∈  𝐵 ) | 
						
							| 44 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 45 | 2 44 | grpcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝐵 ) | 
						
							| 46 | 41 42 43 45 | syl3anc | ⊢ ( ( 𝐷  ∈  𝑉  ∧  ( 𝑦  ∈  𝐵  ∧  dom  ( 𝑦  ∖   I  )  ⊆  𝑋 )  ∧  ( 𝑧  ∈  𝐵  ∧  dom  ( 𝑧  ∖   I  )  ⊆  𝑋 ) )  →  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝐵 ) | 
						
							| 47 | 1 2 44 | symgov | ⊢ ( ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  =  ( 𝑦  ∘  𝑧 ) ) | 
						
							| 48 | 42 43 47 | syl2anc | ⊢ ( ( 𝐷  ∈  𝑉  ∧  ( 𝑦  ∈  𝐵  ∧  dom  ( 𝑦  ∖   I  )  ⊆  𝑋 )  ∧  ( 𝑧  ∈  𝐵  ∧  dom  ( 𝑧  ∖   I  )  ⊆  𝑋 ) )  →  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  =  ( 𝑦  ∘  𝑧 ) ) | 
						
							| 49 | 48 | difeq1d | ⊢ ( ( 𝐷  ∈  𝑉  ∧  ( 𝑦  ∈  𝐵  ∧  dom  ( 𝑦  ∖   I  )  ⊆  𝑋 )  ∧  ( 𝑧  ∈  𝐵  ∧  dom  ( 𝑧  ∖   I  )  ⊆  𝑋 ) )  →  ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∖   I  )  =  ( ( 𝑦  ∘  𝑧 )  ∖   I  ) ) | 
						
							| 50 | 49 | dmeqd | ⊢ ( ( 𝐷  ∈  𝑉  ∧  ( 𝑦  ∈  𝐵  ∧  dom  ( 𝑦  ∖   I  )  ⊆  𝑋 )  ∧  ( 𝑧  ∈  𝐵  ∧  dom  ( 𝑧  ∖   I  )  ⊆  𝑋 ) )  →  dom  ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∖   I  )  =  dom  ( ( 𝑦  ∘  𝑧 )  ∖   I  ) ) | 
						
							| 51 |  | mvdco | ⊢ dom  ( ( 𝑦  ∘  𝑧 )  ∖   I  )  ⊆  ( dom  ( 𝑦  ∖   I  )  ∪  dom  ( 𝑧  ∖   I  ) ) | 
						
							| 52 |  | simp2r | ⊢ ( ( 𝐷  ∈  𝑉  ∧  ( 𝑦  ∈  𝐵  ∧  dom  ( 𝑦  ∖   I  )  ⊆  𝑋 )  ∧  ( 𝑧  ∈  𝐵  ∧  dom  ( 𝑧  ∖   I  )  ⊆  𝑋 ) )  →  dom  ( 𝑦  ∖   I  )  ⊆  𝑋 ) | 
						
							| 53 |  | simp3r | ⊢ ( ( 𝐷  ∈  𝑉  ∧  ( 𝑦  ∈  𝐵  ∧  dom  ( 𝑦  ∖   I  )  ⊆  𝑋 )  ∧  ( 𝑧  ∈  𝐵  ∧  dom  ( 𝑧  ∖   I  )  ⊆  𝑋 ) )  →  dom  ( 𝑧  ∖   I  )  ⊆  𝑋 ) | 
						
							| 54 | 52 53 | unssd | ⊢ ( ( 𝐷  ∈  𝑉  ∧  ( 𝑦  ∈  𝐵  ∧  dom  ( 𝑦  ∖   I  )  ⊆  𝑋 )  ∧  ( 𝑧  ∈  𝐵  ∧  dom  ( 𝑧  ∖   I  )  ⊆  𝑋 ) )  →  ( dom  ( 𝑦  ∖   I  )  ∪  dom  ( 𝑧  ∖   I  ) )  ⊆  𝑋 ) | 
						
							| 55 | 51 54 | sstrid | ⊢ ( ( 𝐷  ∈  𝑉  ∧  ( 𝑦  ∈  𝐵  ∧  dom  ( 𝑦  ∖   I  )  ⊆  𝑋 )  ∧  ( 𝑧  ∈  𝐵  ∧  dom  ( 𝑧  ∖   I  )  ⊆  𝑋 ) )  →  dom  ( ( 𝑦  ∘  𝑧 )  ∖   I  )  ⊆  𝑋 ) | 
						
							| 56 | 50 55 | eqsstrd | ⊢ ( ( 𝐷  ∈  𝑉  ∧  ( 𝑦  ∈  𝐵  ∧  dom  ( 𝑦  ∖   I  )  ⊆  𝑋 )  ∧  ( 𝑧  ∈  𝐵  ∧  dom  ( 𝑧  ∖   I  )  ⊆  𝑋 ) )  →  dom  ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∖   I  )  ⊆  𝑋 ) | 
						
							| 57 | 40 46 56 | elrabd | ⊢ ( ( 𝐷  ∈  𝑉  ∧  ( 𝑦  ∈  𝐵  ∧  dom  ( 𝑦  ∖   I  )  ⊆  𝑋 )  ∧  ( 𝑧  ∈  𝐵  ∧  dom  ( 𝑧  ∖   I  )  ⊆  𝑋 ) )  →  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  { 𝑥  ∈  𝐵  ∣  dom  ( 𝑥  ∖   I  )  ⊆  𝑋 } ) | 
						
							| 58 | 29 33 37 57 | syl3anb | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑦  ∈  { 𝑥  ∈  𝐵  ∣  dom  ( 𝑥  ∖   I  )  ⊆  𝑋 }  ∧  𝑧  ∈  { 𝑥  ∈  𝐵  ∣  dom  ( 𝑥  ∖   I  )  ⊆  𝑋 } )  →  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  { 𝑥  ∈  𝐵  ∣  dom  ( 𝑥  ∖   I  )  ⊆  𝑋 } ) | 
						
							| 59 |  | difeq1 | ⊢ ( 𝑥  =  ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  →  ( 𝑥  ∖   I  )  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  ∖   I  ) ) | 
						
							| 60 | 59 | dmeqd | ⊢ ( 𝑥  =  ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  →  dom  ( 𝑥  ∖   I  )  =  dom  ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  ∖   I  ) ) | 
						
							| 61 | 60 | sseq1d | ⊢ ( 𝑥  =  ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  →  ( dom  ( 𝑥  ∖   I  )  ⊆  𝑋  ↔  dom  ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  ∖   I  )  ⊆  𝑋 ) ) | 
						
							| 62 |  | simprl | ⊢ ( ( 𝐷  ∈  𝑉  ∧  ( 𝑦  ∈  𝐵  ∧  dom  ( 𝑦  ∖   I  )  ⊆  𝑋 ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 63 |  | eqid | ⊢ ( invg ‘ 𝐺 )  =  ( invg ‘ 𝐺 ) | 
						
							| 64 | 2 63 | grpinvcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑦  ∈  𝐵 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  ∈  𝐵 ) | 
						
							| 65 | 12 62 64 | syl2an2r | ⊢ ( ( 𝐷  ∈  𝑉  ∧  ( 𝑦  ∈  𝐵  ∧  dom  ( 𝑦  ∖   I  )  ⊆  𝑋 ) )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  ∈  𝐵 ) | 
						
							| 66 | 1 2 63 | symginv | ⊢ ( 𝑦  ∈  𝐵  →  ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  =  ◡ 𝑦 ) | 
						
							| 67 | 66 | ad2antrl | ⊢ ( ( 𝐷  ∈  𝑉  ∧  ( 𝑦  ∈  𝐵  ∧  dom  ( 𝑦  ∖   I  )  ⊆  𝑋 ) )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  =  ◡ 𝑦 ) | 
						
							| 68 | 67 | difeq1d | ⊢ ( ( 𝐷  ∈  𝑉  ∧  ( 𝑦  ∈  𝐵  ∧  dom  ( 𝑦  ∖   I  )  ⊆  𝑋 ) )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  ∖   I  )  =  ( ◡ 𝑦  ∖   I  ) ) | 
						
							| 69 | 68 | dmeqd | ⊢ ( ( 𝐷  ∈  𝑉  ∧  ( 𝑦  ∈  𝐵  ∧  dom  ( 𝑦  ∖   I  )  ⊆  𝑋 ) )  →  dom  ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  ∖   I  )  =  dom  ( ◡ 𝑦  ∖   I  ) ) | 
						
							| 70 | 1 2 | symgbasf1o | ⊢ ( 𝑦  ∈  𝐵  →  𝑦 : 𝐷 –1-1-onto→ 𝐷 ) | 
						
							| 71 | 70 | ad2antrl | ⊢ ( ( 𝐷  ∈  𝑉  ∧  ( 𝑦  ∈  𝐵  ∧  dom  ( 𝑦  ∖   I  )  ⊆  𝑋 ) )  →  𝑦 : 𝐷 –1-1-onto→ 𝐷 ) | 
						
							| 72 |  | f1omvdcnv | ⊢ ( 𝑦 : 𝐷 –1-1-onto→ 𝐷  →  dom  ( ◡ 𝑦  ∖   I  )  =  dom  ( 𝑦  ∖   I  ) ) | 
						
							| 73 | 71 72 | syl | ⊢ ( ( 𝐷  ∈  𝑉  ∧  ( 𝑦  ∈  𝐵  ∧  dom  ( 𝑦  ∖   I  )  ⊆  𝑋 ) )  →  dom  ( ◡ 𝑦  ∖   I  )  =  dom  ( 𝑦  ∖   I  ) ) | 
						
							| 74 | 69 73 | eqtrd | ⊢ ( ( 𝐷  ∈  𝑉  ∧  ( 𝑦  ∈  𝐵  ∧  dom  ( 𝑦  ∖   I  )  ⊆  𝑋 ) )  →  dom  ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  ∖   I  )  =  dom  ( 𝑦  ∖   I  ) ) | 
						
							| 75 |  | simprr | ⊢ ( ( 𝐷  ∈  𝑉  ∧  ( 𝑦  ∈  𝐵  ∧  dom  ( 𝑦  ∖   I  )  ⊆  𝑋 ) )  →  dom  ( 𝑦  ∖   I  )  ⊆  𝑋 ) | 
						
							| 76 | 74 75 | eqsstrd | ⊢ ( ( 𝐷  ∈  𝑉  ∧  ( 𝑦  ∈  𝐵  ∧  dom  ( 𝑦  ∖   I  )  ⊆  𝑋 ) )  →  dom  ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  ∖   I  )  ⊆  𝑋 ) | 
						
							| 77 | 61 65 76 | elrabd | ⊢ ( ( 𝐷  ∈  𝑉  ∧  ( 𝑦  ∈  𝐵  ∧  dom  ( 𝑦  ∖   I  )  ⊆  𝑋 ) )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  ∈  { 𝑥  ∈  𝐵  ∣  dom  ( 𝑥  ∖   I  )  ⊆  𝑋 } ) | 
						
							| 78 | 33 77 | sylan2b | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑦  ∈  { 𝑥  ∈  𝐵  ∣  dom  ( 𝑥  ∖   I  )  ⊆  𝑋 } )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  ∈  { 𝑥  ∈  𝐵  ∣  dom  ( 𝑥  ∖   I  )  ⊆  𝑋 } ) | 
						
							| 79 | 3 4 5 8 28 58 78 12 | issubgrpd2 | ⊢ ( 𝐷  ∈  𝑉  →  { 𝑥  ∈  𝐵  ∣  dom  ( 𝑥  ∖   I  )  ⊆  𝑋 }  ∈  ( SubGrp ‘ 𝐺 ) ) |