Step |
Hyp |
Ref |
Expression |
1 |
|
symgsssg.g |
⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) |
2 |
|
symgsssg.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
3 |
|
eqidd |
⊢ ( 𝐷 ∈ 𝑉 → ( 𝐺 ↾s { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ⊆ 𝑋 } ) = ( 𝐺 ↾s { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ⊆ 𝑋 } ) ) |
4 |
|
eqidd |
⊢ ( 𝐷 ∈ 𝑉 → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) ) |
5 |
|
eqidd |
⊢ ( 𝐷 ∈ 𝑉 → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) ) |
6 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ⊆ 𝑋 } ⊆ 𝐵 |
7 |
6 2
|
sseqtri |
⊢ { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ⊆ 𝑋 } ⊆ ( Base ‘ 𝐺 ) |
8 |
7
|
a1i |
⊢ ( 𝐷 ∈ 𝑉 → { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ⊆ 𝑋 } ⊆ ( Base ‘ 𝐺 ) ) |
9 |
|
difeq1 |
⊢ ( 𝑥 = ( 0g ‘ 𝐺 ) → ( 𝑥 ∖ I ) = ( ( 0g ‘ 𝐺 ) ∖ I ) ) |
10 |
9
|
dmeqd |
⊢ ( 𝑥 = ( 0g ‘ 𝐺 ) → dom ( 𝑥 ∖ I ) = dom ( ( 0g ‘ 𝐺 ) ∖ I ) ) |
11 |
10
|
sseq1d |
⊢ ( 𝑥 = ( 0g ‘ 𝐺 ) → ( dom ( 𝑥 ∖ I ) ⊆ 𝑋 ↔ dom ( ( 0g ‘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) |
12 |
1
|
symggrp |
⊢ ( 𝐷 ∈ 𝑉 → 𝐺 ∈ Grp ) |
13 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
14 |
2 13
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
15 |
12 14
|
syl |
⊢ ( 𝐷 ∈ 𝑉 → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
16 |
1
|
symgid |
⊢ ( 𝐷 ∈ 𝑉 → ( I ↾ 𝐷 ) = ( 0g ‘ 𝐺 ) ) |
17 |
16
|
difeq1d |
⊢ ( 𝐷 ∈ 𝑉 → ( ( I ↾ 𝐷 ) ∖ I ) = ( ( 0g ‘ 𝐺 ) ∖ I ) ) |
18 |
17
|
dmeqd |
⊢ ( 𝐷 ∈ 𝑉 → dom ( ( I ↾ 𝐷 ) ∖ I ) = dom ( ( 0g ‘ 𝐺 ) ∖ I ) ) |
19 |
|
resss |
⊢ ( I ↾ 𝐷 ) ⊆ I |
20 |
|
ssdif0 |
⊢ ( ( I ↾ 𝐷 ) ⊆ I ↔ ( ( I ↾ 𝐷 ) ∖ I ) = ∅ ) |
21 |
19 20
|
mpbi |
⊢ ( ( I ↾ 𝐷 ) ∖ I ) = ∅ |
22 |
21
|
dmeqi |
⊢ dom ( ( I ↾ 𝐷 ) ∖ I ) = dom ∅ |
23 |
|
dm0 |
⊢ dom ∅ = ∅ |
24 |
22 23
|
eqtri |
⊢ dom ( ( I ↾ 𝐷 ) ∖ I ) = ∅ |
25 |
|
0ss |
⊢ ∅ ⊆ 𝑋 |
26 |
24 25
|
eqsstri |
⊢ dom ( ( I ↾ 𝐷 ) ∖ I ) ⊆ 𝑋 |
27 |
18 26
|
eqsstrrdi |
⊢ ( 𝐷 ∈ 𝑉 → dom ( ( 0g ‘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) |
28 |
11 15 27
|
elrabd |
⊢ ( 𝐷 ∈ 𝑉 → ( 0g ‘ 𝐺 ) ∈ { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ⊆ 𝑋 } ) |
29 |
|
biid |
⊢ ( 𝐷 ∈ 𝑉 ↔ 𝐷 ∈ 𝑉 ) |
30 |
|
difeq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∖ I ) = ( 𝑦 ∖ I ) ) |
31 |
30
|
dmeqd |
⊢ ( 𝑥 = 𝑦 → dom ( 𝑥 ∖ I ) = dom ( 𝑦 ∖ I ) ) |
32 |
31
|
sseq1d |
⊢ ( 𝑥 = 𝑦 → ( dom ( 𝑥 ∖ I ) ⊆ 𝑋 ↔ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ) |
33 |
32
|
elrab |
⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ⊆ 𝑋 } ↔ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ) |
34 |
|
difeq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∖ I ) = ( 𝑧 ∖ I ) ) |
35 |
34
|
dmeqd |
⊢ ( 𝑥 = 𝑧 → dom ( 𝑥 ∖ I ) = dom ( 𝑧 ∖ I ) ) |
36 |
35
|
sseq1d |
⊢ ( 𝑥 = 𝑧 → ( dom ( 𝑥 ∖ I ) ⊆ 𝑋 ↔ dom ( 𝑧 ∖ I ) ⊆ 𝑋 ) ) |
37 |
36
|
elrab |
⊢ ( 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ⊆ 𝑋 } ↔ ( 𝑧 ∈ 𝐵 ∧ dom ( 𝑧 ∖ I ) ⊆ 𝑋 ) ) |
38 |
|
difeq1 |
⊢ ( 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) → ( 𝑥 ∖ I ) = ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∖ I ) ) |
39 |
38
|
dmeqd |
⊢ ( 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) → dom ( 𝑥 ∖ I ) = dom ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∖ I ) ) |
40 |
39
|
sseq1d |
⊢ ( 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) → ( dom ( 𝑥 ∖ I ) ⊆ 𝑋 ↔ dom ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∖ I ) ⊆ 𝑋 ) ) |
41 |
12
|
3ad2ant1 |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝐵 ∧ dom ( 𝑧 ∖ I ) ⊆ 𝑋 ) ) → 𝐺 ∈ Grp ) |
42 |
|
simp2l |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝐵 ∧ dom ( 𝑧 ∖ I ) ⊆ 𝑋 ) ) → 𝑦 ∈ 𝐵 ) |
43 |
|
simp3l |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝐵 ∧ dom ( 𝑧 ∖ I ) ⊆ 𝑋 ) ) → 𝑧 ∈ 𝐵 ) |
44 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
45 |
2 44
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝐵 ) |
46 |
41 42 43 45
|
syl3anc |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝐵 ∧ dom ( 𝑧 ∖ I ) ⊆ 𝑋 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝐵 ) |
47 |
1 2 44
|
symgov |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑦 ∘ 𝑧 ) ) |
48 |
42 43 47
|
syl2anc |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝐵 ∧ dom ( 𝑧 ∖ I ) ⊆ 𝑋 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑦 ∘ 𝑧 ) ) |
49 |
48
|
difeq1d |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝐵 ∧ dom ( 𝑧 ∖ I ) ⊆ 𝑋 ) ) → ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∖ I ) = ( ( 𝑦 ∘ 𝑧 ) ∖ I ) ) |
50 |
49
|
dmeqd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝐵 ∧ dom ( 𝑧 ∖ I ) ⊆ 𝑋 ) ) → dom ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∖ I ) = dom ( ( 𝑦 ∘ 𝑧 ) ∖ I ) ) |
51 |
|
mvdco |
⊢ dom ( ( 𝑦 ∘ 𝑧 ) ∖ I ) ⊆ ( dom ( 𝑦 ∖ I ) ∪ dom ( 𝑧 ∖ I ) ) |
52 |
|
simp2r |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝐵 ∧ dom ( 𝑧 ∖ I ) ⊆ 𝑋 ) ) → dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) |
53 |
|
simp3r |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝐵 ∧ dom ( 𝑧 ∖ I ) ⊆ 𝑋 ) ) → dom ( 𝑧 ∖ I ) ⊆ 𝑋 ) |
54 |
52 53
|
unssd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝐵 ∧ dom ( 𝑧 ∖ I ) ⊆ 𝑋 ) ) → ( dom ( 𝑦 ∖ I ) ∪ dom ( 𝑧 ∖ I ) ) ⊆ 𝑋 ) |
55 |
51 54
|
sstrid |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝐵 ∧ dom ( 𝑧 ∖ I ) ⊆ 𝑋 ) ) → dom ( ( 𝑦 ∘ 𝑧 ) ∖ I ) ⊆ 𝑋 ) |
56 |
50 55
|
eqsstrd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝐵 ∧ dom ( 𝑧 ∖ I ) ⊆ 𝑋 ) ) → dom ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∖ I ) ⊆ 𝑋 ) |
57 |
40 46 56
|
elrabd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝐵 ∧ dom ( 𝑧 ∖ I ) ⊆ 𝑋 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ⊆ 𝑋 } ) |
58 |
29 33 37 57
|
syl3anb |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ⊆ 𝑋 } ∧ 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ⊆ 𝑋 } ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ⊆ 𝑋 } ) |
59 |
|
difeq1 |
⊢ ( 𝑥 = ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) → ( 𝑥 ∖ I ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∖ I ) ) |
60 |
59
|
dmeqd |
⊢ ( 𝑥 = ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) → dom ( 𝑥 ∖ I ) = dom ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∖ I ) ) |
61 |
60
|
sseq1d |
⊢ ( 𝑥 = ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) → ( dom ( 𝑥 ∖ I ) ⊆ 𝑋 ↔ dom ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∖ I ) ⊆ 𝑋 ) ) |
62 |
|
simprl |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ) → 𝑦 ∈ 𝐵 ) |
63 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
64 |
2 63
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝐵 ) |
65 |
12 62 64
|
syl2an2r |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝐵 ) |
66 |
1 2 63
|
symginv |
⊢ ( 𝑦 ∈ 𝐵 → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) = ◡ 𝑦 ) |
67 |
66
|
ad2antrl |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) = ◡ 𝑦 ) |
68 |
67
|
difeq1d |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∖ I ) = ( ◡ 𝑦 ∖ I ) ) |
69 |
68
|
dmeqd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ) → dom ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∖ I ) = dom ( ◡ 𝑦 ∖ I ) ) |
70 |
1 2
|
symgbasf1o |
⊢ ( 𝑦 ∈ 𝐵 → 𝑦 : 𝐷 –1-1-onto→ 𝐷 ) |
71 |
70
|
ad2antrl |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ) → 𝑦 : 𝐷 –1-1-onto→ 𝐷 ) |
72 |
|
f1omvdcnv |
⊢ ( 𝑦 : 𝐷 –1-1-onto→ 𝐷 → dom ( ◡ 𝑦 ∖ I ) = dom ( 𝑦 ∖ I ) ) |
73 |
71 72
|
syl |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ) → dom ( ◡ 𝑦 ∖ I ) = dom ( 𝑦 ∖ I ) ) |
74 |
69 73
|
eqtrd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ) → dom ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∖ I ) = dom ( 𝑦 ∖ I ) ) |
75 |
|
simprr |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ) → dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) |
76 |
74 75
|
eqsstrd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ) → dom ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∖ I ) ⊆ 𝑋 ) |
77 |
61 65 76
|
elrabd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ dom ( 𝑦 ∖ I ) ⊆ 𝑋 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ⊆ 𝑋 } ) |
78 |
33 77
|
sylan2b |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ⊆ 𝑋 } ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ⊆ 𝑋 } ) |
79 |
3 4 5 8 28 58 78 12
|
issubgrpd2 |
⊢ ( 𝐷 ∈ 𝑉 → { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ⊆ 𝑋 } ∈ ( SubGrp ‘ 𝐺 ) ) |