| Step | Hyp | Ref | Expression | 
						
							| 1 |  | symgsubmefmndALT.m | ⊢ 𝑀  =  ( EndoFMnd ‘ 𝐴 ) | 
						
							| 2 |  | symgsubmefmndALT.g | ⊢ 𝐺  =  ( SymGrp ‘ 𝐴 ) | 
						
							| 3 |  | symgsubmefmndALT.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 4 | 1 | efmndmnd | ⊢ ( 𝐴  ∈  𝑉  →  𝑀  ∈  Mnd ) | 
						
							| 5 | 2 3 1 | symgressbas | ⊢ 𝐺  =  ( 𝑀  ↾s  𝐵 ) | 
						
							| 6 | 2 | symggrp | ⊢ ( 𝐴  ∈  𝑉  →  𝐺  ∈  Grp ) | 
						
							| 7 |  | grpmnd | ⊢ ( 𝐺  ∈  Grp  →  𝐺  ∈  Mnd ) | 
						
							| 8 | 6 7 | syl | ⊢ ( 𝐴  ∈  𝑉  →  𝐺  ∈  Mnd ) | 
						
							| 9 | 5 8 | eqeltrrid | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝑀  ↾s  𝐵 )  ∈  Mnd ) | 
						
							| 10 | 2 | idresperm | ⊢ ( 𝐴  ∈  𝑉  →  (  I   ↾  𝐴 )  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 11 | 1 | efmndid | ⊢ ( 𝐴  ∈  𝑉  →  (  I   ↾  𝐴 )  =  ( 0g ‘ 𝑀 ) ) | 
						
							| 12 | 3 | eqcomi | ⊢ ( Base ‘ 𝐺 )  =  𝐵 | 
						
							| 13 | 12 | a1i | ⊢ ( 𝐴  ∈  𝑉  →  ( Base ‘ 𝐺 )  =  𝐵 ) | 
						
							| 14 | 10 11 13 | 3eltr3d | ⊢ ( 𝐴  ∈  𝑉  →  ( 0g ‘ 𝑀 )  ∈  𝐵 ) | 
						
							| 15 | 2 3 | symgbasmap | ⊢ ( 𝑓  ∈  𝐵  →  𝑓  ∈  ( 𝐴  ↑m  𝐴 ) ) | 
						
							| 16 | 15 | ssriv | ⊢ 𝐵  ⊆  ( 𝐴  ↑m  𝐴 ) | 
						
							| 17 |  | eqid | ⊢ ( Base ‘ 𝑀 )  =  ( Base ‘ 𝑀 ) | 
						
							| 18 | 1 17 | efmndbas | ⊢ ( Base ‘ 𝑀 )  =  ( 𝐴  ↑m  𝐴 ) | 
						
							| 19 | 16 18 | sseqtrri | ⊢ 𝐵  ⊆  ( Base ‘ 𝑀 ) | 
						
							| 20 | 14 19 | jctil | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝐵  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝐵 ) ) | 
						
							| 21 |  | eqid | ⊢ ( 0g ‘ 𝑀 )  =  ( 0g ‘ 𝑀 ) | 
						
							| 22 | 17 21 | issubmndb | ⊢ ( 𝐵  ∈  ( SubMnd ‘ 𝑀 )  ↔  ( ( 𝑀  ∈  Mnd  ∧  ( 𝑀  ↾s  𝐵 )  ∈  Mnd )  ∧  ( 𝐵  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝐵 ) ) ) | 
						
							| 23 | 4 9 20 22 | syl21anbrc | ⊢ ( 𝐴  ∈  𝑉  →  𝐵  ∈  ( SubMnd ‘ 𝑀 ) ) |