Step |
Hyp |
Ref |
Expression |
1 |
|
symgtgp.g |
⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) |
2 |
1
|
symggrp |
⊢ ( 𝐴 ∈ 𝑉 → 𝐺 ∈ Grp ) |
3 |
|
eqid |
⊢ ( EndoFMnd ‘ 𝐴 ) = ( EndoFMnd ‘ 𝐴 ) |
4 |
3
|
efmndtmd |
⊢ ( 𝐴 ∈ 𝑉 → ( EndoFMnd ‘ 𝐴 ) ∈ TopMnd ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
6 |
3 1 5
|
symgsubmefmnd |
⊢ ( 𝐴 ∈ 𝑉 → ( Base ‘ 𝐺 ) ∈ ( SubMnd ‘ ( EndoFMnd ‘ 𝐴 ) ) ) |
7 |
1 5 3
|
symgressbas |
⊢ 𝐺 = ( ( EndoFMnd ‘ 𝐴 ) ↾s ( Base ‘ 𝐺 ) ) |
8 |
7
|
submtmd |
⊢ ( ( ( EndoFMnd ‘ 𝐴 ) ∈ TopMnd ∧ ( Base ‘ 𝐺 ) ∈ ( SubMnd ‘ ( EndoFMnd ‘ 𝐴 ) ) ) → 𝐺 ∈ TopMnd ) |
9 |
4 6 8
|
syl2anc |
⊢ ( 𝐴 ∈ 𝑉 → 𝐺 ∈ TopMnd ) |
10 |
|
eqid |
⊢ ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) = ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) |
11 |
1 5
|
symgtopn |
⊢ ( 𝐴 ∈ 𝑉 → ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↾t ( Base ‘ 𝐺 ) ) = ( TopOpen ‘ 𝐺 ) ) |
12 |
|
distopon |
⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ ( TopOn ‘ 𝐴 ) ) |
13 |
10
|
pttoponconst |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝒫 𝐴 ∈ ( TopOn ‘ 𝐴 ) ) → ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ∈ ( TopOn ‘ ( 𝐴 ↑m 𝐴 ) ) ) |
14 |
12 13
|
mpdan |
⊢ ( 𝐴 ∈ 𝑉 → ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ∈ ( TopOn ‘ ( 𝐴 ↑m 𝐴 ) ) ) |
15 |
1 5
|
elsymgbas |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↔ 𝑥 : 𝐴 –1-1-onto→ 𝐴 ) ) |
16 |
|
f1of |
⊢ ( 𝑥 : 𝐴 –1-1-onto→ 𝐴 → 𝑥 : 𝐴 ⟶ 𝐴 ) |
17 |
|
elmapg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) → ( 𝑥 ∈ ( 𝐴 ↑m 𝐴 ) ↔ 𝑥 : 𝐴 ⟶ 𝐴 ) ) |
18 |
17
|
anidms |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( 𝐴 ↑m 𝐴 ) ↔ 𝑥 : 𝐴 ⟶ 𝐴 ) ) |
19 |
16 18
|
syl5ibr |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 : 𝐴 –1-1-onto→ 𝐴 → 𝑥 ∈ ( 𝐴 ↑m 𝐴 ) ) ) |
20 |
15 19
|
sylbid |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( Base ‘ 𝐺 ) → 𝑥 ∈ ( 𝐴 ↑m 𝐴 ) ) ) |
21 |
20
|
ssrdv |
⊢ ( 𝐴 ∈ 𝑉 → ( Base ‘ 𝐺 ) ⊆ ( 𝐴 ↑m 𝐴 ) ) |
22 |
|
resttopon |
⊢ ( ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ∈ ( TopOn ‘ ( 𝐴 ↑m 𝐴 ) ) ∧ ( Base ‘ 𝐺 ) ⊆ ( 𝐴 ↑m 𝐴 ) ) → ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↾t ( Base ‘ 𝐺 ) ) ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
23 |
14 21 22
|
syl2anc |
⊢ ( 𝐴 ∈ 𝑉 → ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↾t ( Base ‘ 𝐺 ) ) ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
24 |
11 23
|
eqeltrrd |
⊢ ( 𝐴 ∈ 𝑉 → ( TopOpen ‘ 𝐺 ) ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
25 |
|
id |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉 ) |
26 |
|
distop |
⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Top ) |
27 |
|
fconst6g |
⊢ ( 𝒫 𝐴 ∈ Top → ( 𝐴 × { 𝒫 𝐴 } ) : 𝐴 ⟶ Top ) |
28 |
26 27
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 × { 𝒫 𝐴 } ) : 𝐴 ⟶ Top ) |
29 |
15
|
biimpa |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → 𝑥 : 𝐴 –1-1-onto→ 𝐴 ) |
30 |
|
f1ocnv |
⊢ ( 𝑥 : 𝐴 –1-1-onto→ 𝐴 → ◡ 𝑥 : 𝐴 –1-1-onto→ 𝐴 ) |
31 |
|
f1of |
⊢ ( ◡ 𝑥 : 𝐴 –1-1-onto→ 𝐴 → ◡ 𝑥 : 𝐴 ⟶ 𝐴 ) |
32 |
29 30 31
|
3syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ◡ 𝑥 : 𝐴 ⟶ 𝐴 ) |
33 |
32
|
ffvelrnda |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 ∈ 𝐴 ) → ( ◡ 𝑥 ‘ 𝑦 ) ∈ 𝐴 ) |
34 |
33
|
an32s |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ◡ 𝑥 ‘ 𝑦 ) ∈ 𝐴 ) |
35 |
34
|
fmpttd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) : ( Base ‘ 𝐺 ) ⟶ 𝐴 ) |
36 |
35
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) : ( Base ‘ 𝐺 ) ⟶ 𝐴 ) |
37 |
|
cnveq |
⊢ ( 𝑥 = 𝑓 → ◡ 𝑥 = ◡ 𝑓 ) |
38 |
37
|
fveq1d |
⊢ ( 𝑥 = 𝑓 → ( ◡ 𝑥 ‘ 𝑦 ) = ( ◡ 𝑓 ‘ 𝑦 ) ) |
39 |
|
eqid |
⊢ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) |
40 |
|
fvex |
⊢ ( ◡ 𝑓 ‘ 𝑦 ) ∈ V |
41 |
38 39 40
|
fvmpt |
⊢ ( 𝑓 ∈ ( Base ‘ 𝐺 ) → ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ‘ 𝑓 ) = ( ◡ 𝑓 ‘ 𝑦 ) ) |
42 |
41
|
ad2antlr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑡 ∈ 𝒫 𝐴 ) → ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ‘ 𝑓 ) = ( ◡ 𝑓 ‘ 𝑦 ) ) |
43 |
42
|
eleq1d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑡 ∈ 𝒫 𝐴 ) → ( ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ‘ 𝑓 ) ∈ 𝑡 ↔ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) |
44 |
|
eqid |
⊢ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) = ( 𝑢 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) |
45 |
44
|
mptiniseg |
⊢ ( 𝑦 ∈ V → ( ◡ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) “ { 𝑦 } ) = { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ) |
46 |
45
|
elv |
⊢ ( ◡ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) “ { 𝑦 } ) = { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } |
47 |
|
eqid |
⊢ ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↾t ( Base ‘ 𝐺 ) ) = ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↾t ( Base ‘ 𝐺 ) ) |
48 |
14
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ∈ ( TopOn ‘ ( 𝐴 ↑m 𝐴 ) ) ) |
49 |
21
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( Base ‘ 𝐺 ) ⊆ ( 𝐴 ↑m 𝐴 ) ) |
50 |
|
toponuni |
⊢ ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ∈ ( TopOn ‘ ( 𝐴 ↑m 𝐴 ) ) → ( 𝐴 ↑m 𝐴 ) = ∪ ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ) |
51 |
|
mpteq1 |
⊢ ( ( 𝐴 ↑m 𝐴 ) = ∪ ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) → ( 𝑢 ∈ ( 𝐴 ↑m 𝐴 ) ↦ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) = ( 𝑢 ∈ ∪ ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↦ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) ) |
52 |
48 50 51
|
3syl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑢 ∈ ( 𝐴 ↑m 𝐴 ) ↦ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) = ( 𝑢 ∈ ∪ ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↦ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) ) |
53 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → 𝐴 ∈ 𝑉 ) |
54 |
28
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐴 × { 𝒫 𝐴 } ) : 𝐴 ⟶ Top ) |
55 |
1 5
|
elsymgbas |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑓 ∈ ( Base ‘ 𝐺 ) ↔ 𝑓 : 𝐴 –1-1-onto→ 𝐴 ) ) |
56 |
55
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑓 ∈ ( Base ‘ 𝐺 ) ↔ 𝑓 : 𝐴 –1-1-onto→ 𝐴 ) ) |
57 |
56
|
biimpa |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → 𝑓 : 𝐴 –1-1-onto→ 𝐴 ) |
58 |
|
f1ocnv |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐴 → ◡ 𝑓 : 𝐴 –1-1-onto→ 𝐴 ) |
59 |
|
f1of |
⊢ ( ◡ 𝑓 : 𝐴 –1-1-onto→ 𝐴 → ◡ 𝑓 : 𝐴 ⟶ 𝐴 ) |
60 |
57 58 59
|
3syl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ◡ 𝑓 : 𝐴 ⟶ 𝐴 ) |
61 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → 𝑦 ∈ 𝐴 ) |
62 |
60 61
|
ffvelrnd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝐴 ) |
63 |
|
eqid |
⊢ ∪ ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) = ∪ ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) |
64 |
63 10
|
ptpjcn |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐴 × { 𝒫 𝐴 } ) : 𝐴 ⟶ Top ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝐴 ) → ( 𝑢 ∈ ∪ ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↦ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) ∈ ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) Cn ( ( 𝐴 × { 𝒫 𝐴 } ) ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) ) |
65 |
53 54 62 64
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑢 ∈ ∪ ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↦ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) ∈ ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) Cn ( ( 𝐴 × { 𝒫 𝐴 } ) ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) ) |
66 |
26
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → 𝒫 𝐴 ∈ Top ) |
67 |
|
fvconst2g |
⊢ ( ( 𝒫 𝐴 ∈ Top ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝐴 ) → ( ( 𝐴 × { 𝒫 𝐴 } ) ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝒫 𝐴 ) |
68 |
66 62 67
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝐴 × { 𝒫 𝐴 } ) ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝒫 𝐴 ) |
69 |
68
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) Cn ( ( 𝐴 × { 𝒫 𝐴 } ) ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) = ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) Cn 𝒫 𝐴 ) ) |
70 |
65 69
|
eleqtrd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑢 ∈ ∪ ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↦ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) ∈ ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) Cn 𝒫 𝐴 ) ) |
71 |
52 70
|
eqeltrd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑢 ∈ ( 𝐴 ↑m 𝐴 ) ↦ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) ∈ ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) Cn 𝒫 𝐴 ) ) |
72 |
47 48 49 71
|
cnmpt1res |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑢 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) ∈ ( ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↾t ( Base ‘ 𝐺 ) ) Cn 𝒫 𝐴 ) ) |
73 |
11
|
oveq1d |
⊢ ( 𝐴 ∈ 𝑉 → ( ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↾t ( Base ‘ 𝐺 ) ) Cn 𝒫 𝐴 ) = ( ( TopOpen ‘ 𝐺 ) Cn 𝒫 𝐴 ) ) |
74 |
73
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↾t ( Base ‘ 𝐺 ) ) Cn 𝒫 𝐴 ) = ( ( TopOpen ‘ 𝐺 ) Cn 𝒫 𝐴 ) ) |
75 |
72 74
|
eleqtrd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑢 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn 𝒫 𝐴 ) ) |
76 |
|
snelpwi |
⊢ ( 𝑦 ∈ 𝐴 → { 𝑦 } ∈ 𝒫 𝐴 ) |
77 |
76
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → { 𝑦 } ∈ 𝒫 𝐴 ) |
78 |
|
cnima |
⊢ ( ( ( 𝑢 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn 𝒫 𝐴 ) ∧ { 𝑦 } ∈ 𝒫 𝐴 ) → ( ◡ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) “ { 𝑦 } ) ∈ ( TopOpen ‘ 𝐺 ) ) |
79 |
75 77 78
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( ◡ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) “ { 𝑦 } ) ∈ ( TopOpen ‘ 𝐺 ) ) |
80 |
46 79
|
eqeltrrid |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ∈ ( TopOpen ‘ 𝐺 ) ) |
81 |
80
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) → { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ∈ ( TopOpen ‘ 𝐺 ) ) |
82 |
|
fveq1 |
⊢ ( 𝑢 = 𝑓 → ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = ( 𝑓 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) |
83 |
82
|
eqeq1d |
⊢ ( 𝑢 = 𝑓 → ( ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 ↔ ( 𝑓 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 ) ) |
84 |
|
simplr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) → 𝑓 ∈ ( Base ‘ 𝐺 ) ) |
85 |
57
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) → 𝑓 : 𝐴 –1-1-onto→ 𝐴 ) |
86 |
|
simpllr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) → 𝑦 ∈ 𝐴 ) |
87 |
|
f1ocnvfv2 |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑓 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 ) |
88 |
85 86 87
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) → ( 𝑓 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 ) |
89 |
83 84 88
|
elrabd |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) → 𝑓 ∈ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ) |
90 |
|
ssrab2 |
⊢ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ⊆ ( Base ‘ 𝐺 ) |
91 |
90
|
a1i |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) → { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ⊆ ( Base ‘ 𝐺 ) ) |
92 |
15
|
ad3antrrr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↔ 𝑥 : 𝐴 –1-1-onto→ 𝐴 ) ) |
93 |
92
|
biimpa |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → 𝑥 : 𝐴 –1-1-onto→ 𝐴 ) |
94 |
62
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝐴 ) |
95 |
|
f1ocnvfv |
⊢ ( ( 𝑥 : 𝐴 –1-1-onto→ 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝐴 ) → ( ( 𝑥 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 → ( ◡ 𝑥 ‘ 𝑦 ) = ( ◡ 𝑓 ‘ 𝑦 ) ) ) |
96 |
93 94 95
|
syl2anc |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑥 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 → ( ◡ 𝑥 ‘ 𝑦 ) = ( ◡ 𝑓 ‘ 𝑦 ) ) ) |
97 |
|
simplrr |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) |
98 |
|
eleq1 |
⊢ ( ( ◡ 𝑥 ‘ 𝑦 ) = ( ◡ 𝑓 ‘ 𝑦 ) → ( ( ◡ 𝑥 ‘ 𝑦 ) ∈ 𝑡 ↔ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) |
99 |
97 98
|
syl5ibrcom |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( ◡ 𝑥 ‘ 𝑦 ) = ( ◡ 𝑓 ‘ 𝑦 ) → ( ◡ 𝑥 ‘ 𝑦 ) ∈ 𝑡 ) ) |
100 |
96 99
|
syld |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑥 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 → ( ◡ 𝑥 ‘ 𝑦 ) ∈ 𝑡 ) ) |
101 |
100
|
ralrimiva |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 → ( ◡ 𝑥 ‘ 𝑦 ) ∈ 𝑡 ) ) |
102 |
|
fveq1 |
⊢ ( 𝑢 = 𝑥 → ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = ( 𝑥 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) |
103 |
102
|
eqeq1d |
⊢ ( 𝑢 = 𝑥 → ( ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 ↔ ( 𝑥 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 ) ) |
104 |
103
|
ralrab |
⊢ ( ∀ 𝑥 ∈ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ( ◡ 𝑥 ‘ 𝑦 ) ∈ 𝑡 ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 → ( ◡ 𝑥 ‘ 𝑦 ) ∈ 𝑡 ) ) |
105 |
101 104
|
sylibr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) → ∀ 𝑥 ∈ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ( ◡ 𝑥 ‘ 𝑦 ) ∈ 𝑡 ) |
106 |
|
ssrab |
⊢ ( { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ⊆ { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ ( ◡ 𝑥 ‘ 𝑦 ) ∈ 𝑡 } ↔ ( { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ⊆ ( Base ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ( ◡ 𝑥 ‘ 𝑦 ) ∈ 𝑡 ) ) |
107 |
91 105 106
|
sylanbrc |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) → { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ⊆ { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ ( ◡ 𝑥 ‘ 𝑦 ) ∈ 𝑡 } ) |
108 |
39
|
mptpreima |
⊢ ( ◡ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) “ 𝑡 ) = { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ ( ◡ 𝑥 ‘ 𝑦 ) ∈ 𝑡 } |
109 |
107 108
|
sseqtrrdi |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) → { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ⊆ ( ◡ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) “ 𝑡 ) ) |
110 |
|
funmpt |
⊢ Fun ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) |
111 |
|
fvex |
⊢ ( ◡ 𝑥 ‘ 𝑦 ) ∈ V |
112 |
111 39
|
dmmpti |
⊢ dom ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) = ( Base ‘ 𝐺 ) |
113 |
91 112
|
sseqtrrdi |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) → { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ⊆ dom ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ) |
114 |
|
funimass3 |
⊢ ( ( Fun ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ∧ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ⊆ dom ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ) → ( ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) “ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ) ⊆ 𝑡 ↔ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ⊆ ( ◡ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) “ 𝑡 ) ) ) |
115 |
110 113 114
|
sylancr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) → ( ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) “ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ) ⊆ 𝑡 ↔ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ⊆ ( ◡ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) “ 𝑡 ) ) ) |
116 |
109 115
|
mpbird |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) “ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ) ⊆ 𝑡 ) |
117 |
|
eleq2 |
⊢ ( 𝑣 = { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } → ( 𝑓 ∈ 𝑣 ↔ 𝑓 ∈ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ) ) |
118 |
|
imaeq2 |
⊢ ( 𝑣 = { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } → ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) “ 𝑣 ) = ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) “ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ) ) |
119 |
118
|
sseq1d |
⊢ ( 𝑣 = { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } → ( ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) “ 𝑣 ) ⊆ 𝑡 ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) “ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ) ⊆ 𝑡 ) ) |
120 |
117 119
|
anbi12d |
⊢ ( 𝑣 = { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } → ( ( 𝑓 ∈ 𝑣 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) “ 𝑣 ) ⊆ 𝑡 ) ↔ ( 𝑓 ∈ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) “ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ) ⊆ 𝑡 ) ) ) |
121 |
120
|
rspcev |
⊢ ( ( { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ∈ ( TopOpen ‘ 𝐺 ) ∧ ( 𝑓 ∈ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) “ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ) ⊆ 𝑡 ) ) → ∃ 𝑣 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑓 ∈ 𝑣 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) “ 𝑣 ) ⊆ 𝑡 ) ) |
122 |
81 89 116 121
|
syl12anc |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) → ∃ 𝑣 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑓 ∈ 𝑣 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) “ 𝑣 ) ⊆ 𝑡 ) ) |
123 |
122
|
expr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑡 ∈ 𝒫 𝐴 ) → ( ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 → ∃ 𝑣 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑓 ∈ 𝑣 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) “ 𝑣 ) ⊆ 𝑡 ) ) ) |
124 |
43 123
|
sylbid |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑡 ∈ 𝒫 𝐴 ) → ( ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ‘ 𝑓 ) ∈ 𝑡 → ∃ 𝑣 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑓 ∈ 𝑣 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) “ 𝑣 ) ⊆ 𝑡 ) ) ) |
125 |
124
|
ralrimiva |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ∀ 𝑡 ∈ 𝒫 𝐴 ( ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ‘ 𝑓 ) ∈ 𝑡 → ∃ 𝑣 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑓 ∈ 𝑣 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) “ 𝑣 ) ⊆ 𝑡 ) ) ) |
126 |
24
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( TopOpen ‘ 𝐺 ) ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
127 |
12
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → 𝒫 𝐴 ∈ ( TopOn ‘ 𝐴 ) ) |
128 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → 𝑓 ∈ ( Base ‘ 𝐺 ) ) |
129 |
|
iscnp |
⊢ ( ( ( TopOpen ‘ 𝐺 ) ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ∧ 𝒫 𝐴 ∈ ( TopOn ‘ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ∈ ( ( ( TopOpen ‘ 𝐺 ) CnP 𝒫 𝐴 ) ‘ 𝑓 ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) : ( Base ‘ 𝐺 ) ⟶ 𝐴 ∧ ∀ 𝑡 ∈ 𝒫 𝐴 ( ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ‘ 𝑓 ) ∈ 𝑡 → ∃ 𝑣 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑓 ∈ 𝑣 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) “ 𝑣 ) ⊆ 𝑡 ) ) ) ) ) |
130 |
126 127 128 129
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ∈ ( ( ( TopOpen ‘ 𝐺 ) CnP 𝒫 𝐴 ) ‘ 𝑓 ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) : ( Base ‘ 𝐺 ) ⟶ 𝐴 ∧ ∀ 𝑡 ∈ 𝒫 𝐴 ( ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ‘ 𝑓 ) ∈ 𝑡 → ∃ 𝑣 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑓 ∈ 𝑣 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) “ 𝑣 ) ⊆ 𝑡 ) ) ) ) ) |
131 |
36 125 130
|
mpbir2and |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ∈ ( ( ( TopOpen ‘ 𝐺 ) CnP 𝒫 𝐴 ) ‘ 𝑓 ) ) |
132 |
131
|
ralrimiva |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) → ∀ 𝑓 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ∈ ( ( ( TopOpen ‘ 𝐺 ) CnP 𝒫 𝐴 ) ‘ 𝑓 ) ) |
133 |
|
cncnp |
⊢ ( ( ( TopOpen ‘ 𝐺 ) ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ∧ 𝒫 𝐴 ∈ ( TopOn ‘ 𝐴 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn 𝒫 𝐴 ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) : ( Base ‘ 𝐺 ) ⟶ 𝐴 ∧ ∀ 𝑓 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ∈ ( ( ( TopOpen ‘ 𝐺 ) CnP 𝒫 𝐴 ) ‘ 𝑓 ) ) ) ) |
134 |
24 12 133
|
syl2anc |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn 𝒫 𝐴 ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) : ( Base ‘ 𝐺 ) ⟶ 𝐴 ∧ ∀ 𝑓 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ∈ ( ( ( TopOpen ‘ 𝐺 ) CnP 𝒫 𝐴 ) ‘ 𝑓 ) ) ) ) |
135 |
134
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn 𝒫 𝐴 ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) : ( Base ‘ 𝐺 ) ⟶ 𝐴 ∧ ∀ 𝑓 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ∈ ( ( ( TopOpen ‘ 𝐺 ) CnP 𝒫 𝐴 ) ‘ 𝑓 ) ) ) ) |
136 |
35 132 135
|
mpbir2and |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn 𝒫 𝐴 ) ) |
137 |
|
fvconst2g |
⊢ ( ( 𝒫 𝐴 ∈ Top ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐴 × { 𝒫 𝐴 } ) ‘ 𝑦 ) = 𝒫 𝐴 ) |
138 |
26 137
|
sylan |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐴 × { 𝒫 𝐴 } ) ‘ 𝑦 ) = 𝒫 𝐴 ) |
139 |
138
|
oveq2d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) → ( ( TopOpen ‘ 𝐺 ) Cn ( ( 𝐴 × { 𝒫 𝐴 } ) ‘ 𝑦 ) ) = ( ( TopOpen ‘ 𝐺 ) Cn 𝒫 𝐴 ) ) |
140 |
136 139
|
eleqtrrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( ( 𝐴 × { 𝒫 𝐴 } ) ‘ 𝑦 ) ) ) |
141 |
10 24 25 28 140
|
ptcn |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑦 ∈ 𝐴 ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ) ) |
142 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
143 |
5 142
|
grpinvf |
⊢ ( 𝐺 ∈ Grp → ( invg ‘ 𝐺 ) : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐺 ) ) |
144 |
2 143
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ( invg ‘ 𝐺 ) : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐺 ) ) |
145 |
144
|
feqmptd |
⊢ ( 𝐴 ∈ 𝑉 → ( invg ‘ 𝐺 ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
146 |
1 5 142
|
symginv |
⊢ ( 𝑥 ∈ ( Base ‘ 𝐺 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) = ◡ 𝑥 ) |
147 |
146
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) = ◡ 𝑥 ) |
148 |
32
|
feqmptd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ◡ 𝑥 = ( 𝑦 ∈ 𝐴 ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ) |
149 |
147 148
|
eqtrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑦 ∈ 𝐴 ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ) |
150 |
149
|
mpteq2dva |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑦 ∈ 𝐴 ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ) ) |
151 |
145 150
|
eqtrd |
⊢ ( 𝐴 ∈ 𝑉 → ( invg ‘ 𝐺 ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑦 ∈ 𝐴 ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ) ) |
152 |
|
xkopt |
⊢ ( ( 𝒫 𝐴 ∈ Top ∧ 𝐴 ∈ 𝑉 ) → ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) = ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ) |
153 |
26 152
|
mpancom |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) = ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ) |
154 |
153
|
oveq2d |
⊢ ( 𝐴 ∈ 𝑉 → ( ( TopOpen ‘ 𝐺 ) Cn ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ) = ( ( TopOpen ‘ 𝐺 ) Cn ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ) ) |
155 |
141 151 154
|
3eltr4d |
⊢ ( 𝐴 ∈ 𝑉 → ( invg ‘ 𝐺 ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ) ) |
156 |
|
eqid |
⊢ ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) = ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) |
157 |
156
|
xkotopon |
⊢ ( ( 𝒫 𝐴 ∈ Top ∧ 𝒫 𝐴 ∈ Top ) → ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ∈ ( TopOn ‘ ( 𝒫 𝐴 Cn 𝒫 𝐴 ) ) ) |
158 |
26 26 157
|
syl2anc |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ∈ ( TopOn ‘ ( 𝒫 𝐴 Cn 𝒫 𝐴 ) ) ) |
159 |
|
frn |
⊢ ( ( invg ‘ 𝐺 ) : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐺 ) → ran ( invg ‘ 𝐺 ) ⊆ ( Base ‘ 𝐺 ) ) |
160 |
2 143 159
|
3syl |
⊢ ( 𝐴 ∈ 𝑉 → ran ( invg ‘ 𝐺 ) ⊆ ( Base ‘ 𝐺 ) ) |
161 |
|
cndis |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝒫 𝐴 ∈ ( TopOn ‘ 𝐴 ) ) → ( 𝒫 𝐴 Cn 𝒫 𝐴 ) = ( 𝐴 ↑m 𝐴 ) ) |
162 |
12 161
|
mpdan |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝒫 𝐴 Cn 𝒫 𝐴 ) = ( 𝐴 ↑m 𝐴 ) ) |
163 |
21 162
|
sseqtrrd |
⊢ ( 𝐴 ∈ 𝑉 → ( Base ‘ 𝐺 ) ⊆ ( 𝒫 𝐴 Cn 𝒫 𝐴 ) ) |
164 |
|
cnrest2 |
⊢ ( ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ∈ ( TopOn ‘ ( 𝒫 𝐴 Cn 𝒫 𝐴 ) ) ∧ ran ( invg ‘ 𝐺 ) ⊆ ( Base ‘ 𝐺 ) ∧ ( Base ‘ 𝐺 ) ⊆ ( 𝒫 𝐴 Cn 𝒫 𝐴 ) ) → ( ( invg ‘ 𝐺 ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ) ↔ ( invg ‘ 𝐺 ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝐺 ) ) ) ) ) |
165 |
158 160 163 164
|
syl3anc |
⊢ ( 𝐴 ∈ 𝑉 → ( ( invg ‘ 𝐺 ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ) ↔ ( invg ‘ 𝐺 ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝐺 ) ) ) ) ) |
166 |
155 165
|
mpbid |
⊢ ( 𝐴 ∈ 𝑉 → ( invg ‘ 𝐺 ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝐺 ) ) ) ) |
167 |
153
|
oveq1d |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝐺 ) ) = ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↾t ( Base ‘ 𝐺 ) ) ) |
168 |
167 11
|
eqtrd |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝐺 ) ) = ( TopOpen ‘ 𝐺 ) ) |
169 |
168
|
oveq2d |
⊢ ( 𝐴 ∈ 𝑉 → ( ( TopOpen ‘ 𝐺 ) Cn ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝐺 ) ) ) = ( ( TopOpen ‘ 𝐺 ) Cn ( TopOpen ‘ 𝐺 ) ) ) |
170 |
166 169
|
eleqtrd |
⊢ ( 𝐴 ∈ 𝑉 → ( invg ‘ 𝐺 ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( TopOpen ‘ 𝐺 ) ) ) |
171 |
|
eqid |
⊢ ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ 𝐺 ) |
172 |
171 142
|
istgp |
⊢ ( 𝐺 ∈ TopGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ ( invg ‘ 𝐺 ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( TopOpen ‘ 𝐺 ) ) ) ) |
173 |
2 9 170 172
|
syl3anbrc |
⊢ ( 𝐴 ∈ 𝑉 → 𝐺 ∈ TopGrp ) |