Metamath Proof Explorer


Theorem symgtrf

Description: Transpositions are elements of the symmetric group. (Contributed by Stefan O'Rear, 23-Aug-2015)

Ref Expression
Hypotheses symgtrf.t 𝑇 = ran ( pmTrsp ‘ 𝐷 )
symgtrf.g 𝐺 = ( SymGrp ‘ 𝐷 )
symgtrf.b 𝐵 = ( Base ‘ 𝐺 )
Assertion symgtrf 𝑇𝐵

Proof

Step Hyp Ref Expression
1 symgtrf.t 𝑇 = ran ( pmTrsp ‘ 𝐷 )
2 symgtrf.g 𝐺 = ( SymGrp ‘ 𝐷 )
3 symgtrf.b 𝐵 = ( Base ‘ 𝐺 )
4 eqid ( pmTrsp ‘ 𝐷 ) = ( pmTrsp ‘ 𝐷 )
5 4 1 pmtrff1o ( 𝑥𝑇𝑥 : 𝐷1-1-onto𝐷 )
6 2 3 elsymgbas2 ( 𝑥𝑇 → ( 𝑥𝐵𝑥 : 𝐷1-1-onto𝐷 ) )
7 5 6 mpbird ( 𝑥𝑇𝑥𝐵 )
8 7 ssriv 𝑇𝐵