Description: Transpositions are elements of the symmetric group. (Contributed by Stefan O'Rear, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgtrf.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) | |
| symgtrf.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | ||
| symgtrf.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| Assertion | symgtrf | ⊢ 𝑇 ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgtrf.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) | |
| 2 | symgtrf.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | |
| 3 | symgtrf.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 4 | eqid | ⊢ ( pmTrsp ‘ 𝐷 ) = ( pmTrsp ‘ 𝐷 ) | |
| 5 | 4 1 | pmtrff1o | ⊢ ( 𝑥 ∈ 𝑇 → 𝑥 : 𝐷 –1-1-onto→ 𝐷 ) |
| 6 | 2 3 | elsymgbas2 | ⊢ ( 𝑥 ∈ 𝑇 → ( 𝑥 ∈ 𝐵 ↔ 𝑥 : 𝐷 –1-1-onto→ 𝐷 ) ) |
| 7 | 5 6 | mpbird | ⊢ ( 𝑥 ∈ 𝑇 → 𝑥 ∈ 𝐵 ) |
| 8 | 7 | ssriv | ⊢ 𝑇 ⊆ 𝐵 |