Metamath Proof Explorer


Theorem symgtrinv

Description: To invert a permutation represented as a sequence of transpositions, reverse the sequence. (Contributed by Stefan O'Rear, 27-Aug-2015)

Ref Expression
Hypotheses symgtrinv.t 𝑇 = ran ( pmTrsp ‘ 𝐷 )
symgtrinv.g 𝐺 = ( SymGrp ‘ 𝐷 )
symgtrinv.i 𝐼 = ( invg𝐺 )
Assertion symgtrinv ( ( 𝐷𝑉𝑊 ∈ Word 𝑇 ) → ( 𝐼 ‘ ( 𝐺 Σg 𝑊 ) ) = ( 𝐺 Σg ( reverse ‘ 𝑊 ) ) )

Proof

Step Hyp Ref Expression
1 symgtrinv.t 𝑇 = ran ( pmTrsp ‘ 𝐷 )
2 symgtrinv.g 𝐺 = ( SymGrp ‘ 𝐷 )
3 symgtrinv.i 𝐼 = ( invg𝐺 )
4 2 symggrp ( 𝐷𝑉𝐺 ∈ Grp )
5 eqid ( oppg𝐺 ) = ( oppg𝐺 )
6 5 3 invoppggim ( 𝐺 ∈ Grp → 𝐼 ∈ ( 𝐺 GrpIso ( oppg𝐺 ) ) )
7 gimghm ( 𝐼 ∈ ( 𝐺 GrpIso ( oppg𝐺 ) ) → 𝐼 ∈ ( 𝐺 GrpHom ( oppg𝐺 ) ) )
8 ghmmhm ( 𝐼 ∈ ( 𝐺 GrpHom ( oppg𝐺 ) ) → 𝐼 ∈ ( 𝐺 MndHom ( oppg𝐺 ) ) )
9 4 6 7 8 4syl ( 𝐷𝑉𝐼 ∈ ( 𝐺 MndHom ( oppg𝐺 ) ) )
10 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
11 1 2 10 symgtrf 𝑇 ⊆ ( Base ‘ 𝐺 )
12 sswrd ( 𝑇 ⊆ ( Base ‘ 𝐺 ) → Word 𝑇 ⊆ Word ( Base ‘ 𝐺 ) )
13 11 12 ax-mp Word 𝑇 ⊆ Word ( Base ‘ 𝐺 )
14 13 sseli ( 𝑊 ∈ Word 𝑇𝑊 ∈ Word ( Base ‘ 𝐺 ) )
15 10 gsumwmhm ( ( 𝐼 ∈ ( 𝐺 MndHom ( oppg𝐺 ) ) ∧ 𝑊 ∈ Word ( Base ‘ 𝐺 ) ) → ( 𝐼 ‘ ( 𝐺 Σg 𝑊 ) ) = ( ( oppg𝐺 ) Σg ( 𝐼𝑊 ) ) )
16 9 14 15 syl2an ( ( 𝐷𝑉𝑊 ∈ Word 𝑇 ) → ( 𝐼 ‘ ( 𝐺 Σg 𝑊 ) ) = ( ( oppg𝐺 ) Σg ( 𝐼𝑊 ) ) )
17 10 3 grpinvf ( 𝐺 ∈ Grp → 𝐼 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐺 ) )
18 4 17 syl ( 𝐷𝑉𝐼 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐺 ) )
19 wrdf ( 𝑊 ∈ Word 𝑇𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑇 )
20 19 adantl ( ( 𝐷𝑉𝑊 ∈ Word 𝑇 ) → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑇 )
21 fss ( ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑇𝑇 ⊆ ( Base ‘ 𝐺 ) ) → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ ( Base ‘ 𝐺 ) )
22 20 11 21 sylancl ( ( 𝐷𝑉𝑊 ∈ Word 𝑇 ) → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ ( Base ‘ 𝐺 ) )
23 fco ( ( 𝐼 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐺 ) ∧ 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ ( Base ‘ 𝐺 ) ) → ( 𝐼𝑊 ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ ( Base ‘ 𝐺 ) )
24 18 22 23 syl2an2r ( ( 𝐷𝑉𝑊 ∈ Word 𝑇 ) → ( 𝐼𝑊 ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ ( Base ‘ 𝐺 ) )
25 24 ffnd ( ( 𝐷𝑉𝑊 ∈ Word 𝑇 ) → ( 𝐼𝑊 ) Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )
26 20 ffnd ( ( 𝐷𝑉𝑊 ∈ Word 𝑇 ) → 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )
27 fvco2 ( ( 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐼𝑊 ) ‘ 𝑥 ) = ( 𝐼 ‘ ( 𝑊𝑥 ) ) )
28 26 27 sylan ( ( ( 𝐷𝑉𝑊 ∈ Word 𝑇 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐼𝑊 ) ‘ 𝑥 ) = ( 𝐼 ‘ ( 𝑊𝑥 ) ) )
29 20 ffvelrnda ( ( ( 𝐷𝑉𝑊 ∈ Word 𝑇 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊𝑥 ) ∈ 𝑇 )
30 11 29 sselid ( ( ( 𝐷𝑉𝑊 ∈ Word 𝑇 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊𝑥 ) ∈ ( Base ‘ 𝐺 ) )
31 2 10 3 symginv ( ( 𝑊𝑥 ) ∈ ( Base ‘ 𝐺 ) → ( 𝐼 ‘ ( 𝑊𝑥 ) ) = ( 𝑊𝑥 ) )
32 30 31 syl ( ( ( 𝐷𝑉𝑊 ∈ Word 𝑇 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝐼 ‘ ( 𝑊𝑥 ) ) = ( 𝑊𝑥 ) )
33 eqid ( pmTrsp ‘ 𝐷 ) = ( pmTrsp ‘ 𝐷 )
34 33 1 pmtrfcnv ( ( 𝑊𝑥 ) ∈ 𝑇 ( 𝑊𝑥 ) = ( 𝑊𝑥 ) )
35 29 34 syl ( ( ( 𝐷𝑉𝑊 ∈ Word 𝑇 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊𝑥 ) = ( 𝑊𝑥 ) )
36 28 32 35 3eqtrd ( ( ( 𝐷𝑉𝑊 ∈ Word 𝑇 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐼𝑊 ) ‘ 𝑥 ) = ( 𝑊𝑥 ) )
37 25 26 36 eqfnfvd ( ( 𝐷𝑉𝑊 ∈ Word 𝑇 ) → ( 𝐼𝑊 ) = 𝑊 )
38 37 oveq2d ( ( 𝐷𝑉𝑊 ∈ Word 𝑇 ) → ( ( oppg𝐺 ) Σg ( 𝐼𝑊 ) ) = ( ( oppg𝐺 ) Σg 𝑊 ) )
39 4 grpmndd ( 𝐷𝑉𝐺 ∈ Mnd )
40 10 5 gsumwrev ( ( 𝐺 ∈ Mnd ∧ 𝑊 ∈ Word ( Base ‘ 𝐺 ) ) → ( ( oppg𝐺 ) Σg 𝑊 ) = ( 𝐺 Σg ( reverse ‘ 𝑊 ) ) )
41 39 14 40 syl2an ( ( 𝐷𝑉𝑊 ∈ Word 𝑇 ) → ( ( oppg𝐺 ) Σg 𝑊 ) = ( 𝐺 Σg ( reverse ‘ 𝑊 ) ) )
42 16 38 41 3eqtrd ( ( 𝐷𝑉𝑊 ∈ Word 𝑇 ) → ( 𝐼 ‘ ( 𝐺 Σg 𝑊 ) ) = ( 𝐺 Σg ( reverse ‘ 𝑊 ) ) )