| Step | Hyp | Ref | Expression | 
						
							| 1 |  | symgtrinv.t | ⊢ 𝑇  =  ran  ( pmTrsp ‘ 𝐷 ) | 
						
							| 2 |  | symgtrinv.g | ⊢ 𝐺  =  ( SymGrp ‘ 𝐷 ) | 
						
							| 3 |  | symgtrinv.i | ⊢ 𝐼  =  ( invg ‘ 𝐺 ) | 
						
							| 4 | 2 | symggrp | ⊢ ( 𝐷  ∈  𝑉  →  𝐺  ∈  Grp ) | 
						
							| 5 |  | eqid | ⊢ ( oppg ‘ 𝐺 )  =  ( oppg ‘ 𝐺 ) | 
						
							| 6 | 5 3 | invoppggim | ⊢ ( 𝐺  ∈  Grp  →  𝐼  ∈  ( 𝐺  GrpIso  ( oppg ‘ 𝐺 ) ) ) | 
						
							| 7 |  | gimghm | ⊢ ( 𝐼  ∈  ( 𝐺  GrpIso  ( oppg ‘ 𝐺 ) )  →  𝐼  ∈  ( 𝐺  GrpHom  ( oppg ‘ 𝐺 ) ) ) | 
						
							| 8 |  | ghmmhm | ⊢ ( 𝐼  ∈  ( 𝐺  GrpHom  ( oppg ‘ 𝐺 ) )  →  𝐼  ∈  ( 𝐺  MndHom  ( oppg ‘ 𝐺 ) ) ) | 
						
							| 9 | 4 6 7 8 | 4syl | ⊢ ( 𝐷  ∈  𝑉  →  𝐼  ∈  ( 𝐺  MndHom  ( oppg ‘ 𝐺 ) ) ) | 
						
							| 10 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 11 | 1 2 10 | symgtrf | ⊢ 𝑇  ⊆  ( Base ‘ 𝐺 ) | 
						
							| 12 |  | sswrd | ⊢ ( 𝑇  ⊆  ( Base ‘ 𝐺 )  →  Word  𝑇  ⊆  Word  ( Base ‘ 𝐺 ) ) | 
						
							| 13 | 11 12 | ax-mp | ⊢ Word  𝑇  ⊆  Word  ( Base ‘ 𝐺 ) | 
						
							| 14 | 13 | sseli | ⊢ ( 𝑊  ∈  Word  𝑇  →  𝑊  ∈  Word  ( Base ‘ 𝐺 ) ) | 
						
							| 15 | 10 | gsumwmhm | ⊢ ( ( 𝐼  ∈  ( 𝐺  MndHom  ( oppg ‘ 𝐺 ) )  ∧  𝑊  ∈  Word  ( Base ‘ 𝐺 ) )  →  ( 𝐼 ‘ ( 𝐺  Σg  𝑊 ) )  =  ( ( oppg ‘ 𝐺 )  Σg  ( 𝐼  ∘  𝑊 ) ) ) | 
						
							| 16 | 9 14 15 | syl2an | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  Word  𝑇 )  →  ( 𝐼 ‘ ( 𝐺  Σg  𝑊 ) )  =  ( ( oppg ‘ 𝐺 )  Σg  ( 𝐼  ∘  𝑊 ) ) ) | 
						
							| 17 | 10 3 | grpinvf | ⊢ ( 𝐺  ∈  Grp  →  𝐼 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐺 ) ) | 
						
							| 18 | 4 17 | syl | ⊢ ( 𝐷  ∈  𝑉  →  𝐼 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐺 ) ) | 
						
							| 19 |  | wrdf | ⊢ ( 𝑊  ∈  Word  𝑇  →  𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑇 ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  Word  𝑇 )  →  𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑇 ) | 
						
							| 21 |  | fss | ⊢ ( ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑇  ∧  𝑇  ⊆  ( Base ‘ 𝐺 ) )  →  𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ ( Base ‘ 𝐺 ) ) | 
						
							| 22 | 20 11 21 | sylancl | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  Word  𝑇 )  →  𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ ( Base ‘ 𝐺 ) ) | 
						
							| 23 |  | fco | ⊢ ( ( 𝐼 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐺 )  ∧  𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ ( Base ‘ 𝐺 ) )  →  ( 𝐼  ∘  𝑊 ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ ( Base ‘ 𝐺 ) ) | 
						
							| 24 | 18 22 23 | syl2an2r | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  Word  𝑇 )  →  ( 𝐼  ∘  𝑊 ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ ( Base ‘ 𝐺 ) ) | 
						
							| 25 | 24 | ffnd | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  Word  𝑇 )  →  ( 𝐼  ∘  𝑊 )  Fn  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 26 | 20 | ffnd | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  Word  𝑇 )  →  𝑊  Fn  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 27 |  | fvco2 | ⊢ ( ( 𝑊  Fn  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ∧  𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝐼  ∘  𝑊 ) ‘ 𝑥 )  =  ( 𝐼 ‘ ( 𝑊 ‘ 𝑥 ) ) ) | 
						
							| 28 | 26 27 | sylan | ⊢ ( ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  Word  𝑇 )  ∧  𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝐼  ∘  𝑊 ) ‘ 𝑥 )  =  ( 𝐼 ‘ ( 𝑊 ‘ 𝑥 ) ) ) | 
						
							| 29 | 20 | ffvelcdmda | ⊢ ( ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  Word  𝑇 )  ∧  𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊 ‘ 𝑥 )  ∈  𝑇 ) | 
						
							| 30 | 11 29 | sselid | ⊢ ( ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  Word  𝑇 )  ∧  𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊 ‘ 𝑥 )  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 31 | 2 10 3 | symginv | ⊢ ( ( 𝑊 ‘ 𝑥 )  ∈  ( Base ‘ 𝐺 )  →  ( 𝐼 ‘ ( 𝑊 ‘ 𝑥 ) )  =  ◡ ( 𝑊 ‘ 𝑥 ) ) | 
						
							| 32 | 30 31 | syl | ⊢ ( ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  Word  𝑇 )  ∧  𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝐼 ‘ ( 𝑊 ‘ 𝑥 ) )  =  ◡ ( 𝑊 ‘ 𝑥 ) ) | 
						
							| 33 |  | eqid | ⊢ ( pmTrsp ‘ 𝐷 )  =  ( pmTrsp ‘ 𝐷 ) | 
						
							| 34 | 33 1 | pmtrfcnv | ⊢ ( ( 𝑊 ‘ 𝑥 )  ∈  𝑇  →  ◡ ( 𝑊 ‘ 𝑥 )  =  ( 𝑊 ‘ 𝑥 ) ) | 
						
							| 35 | 29 34 | syl | ⊢ ( ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  Word  𝑇 )  ∧  𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ◡ ( 𝑊 ‘ 𝑥 )  =  ( 𝑊 ‘ 𝑥 ) ) | 
						
							| 36 | 28 32 35 | 3eqtrd | ⊢ ( ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  Word  𝑇 )  ∧  𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝐼  ∘  𝑊 ) ‘ 𝑥 )  =  ( 𝑊 ‘ 𝑥 ) ) | 
						
							| 37 | 25 26 36 | eqfnfvd | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  Word  𝑇 )  →  ( 𝐼  ∘  𝑊 )  =  𝑊 ) | 
						
							| 38 | 37 | oveq2d | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  Word  𝑇 )  →  ( ( oppg ‘ 𝐺 )  Σg  ( 𝐼  ∘  𝑊 ) )  =  ( ( oppg ‘ 𝐺 )  Σg  𝑊 ) ) | 
						
							| 39 | 4 | grpmndd | ⊢ ( 𝐷  ∈  𝑉  →  𝐺  ∈  Mnd ) | 
						
							| 40 | 10 5 | gsumwrev | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝑊  ∈  Word  ( Base ‘ 𝐺 ) )  →  ( ( oppg ‘ 𝐺 )  Σg  𝑊 )  =  ( 𝐺  Σg  ( reverse ‘ 𝑊 ) ) ) | 
						
							| 41 | 39 14 40 | syl2an | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  Word  𝑇 )  →  ( ( oppg ‘ 𝐺 )  Σg  𝑊 )  =  ( 𝐺  Σg  ( reverse ‘ 𝑊 ) ) ) | 
						
							| 42 | 16 38 41 | 3eqtrd | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑊  ∈  Word  𝑇 )  →  ( 𝐼 ‘ ( 𝐺  Σg  𝑊 ) )  =  ( 𝐺  Σg  ( reverse ‘ 𝑊 ) ) ) |