Step |
Hyp |
Ref |
Expression |
1 |
|
symgtrinv.t |
⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) |
2 |
|
symgtrinv.g |
⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) |
3 |
|
symgtrinv.i |
⊢ 𝐼 = ( invg ‘ 𝐺 ) |
4 |
2
|
symggrp |
⊢ ( 𝐷 ∈ 𝑉 → 𝐺 ∈ Grp ) |
5 |
|
eqid |
⊢ ( oppg ‘ 𝐺 ) = ( oppg ‘ 𝐺 ) |
6 |
5 3
|
invoppggim |
⊢ ( 𝐺 ∈ Grp → 𝐼 ∈ ( 𝐺 GrpIso ( oppg ‘ 𝐺 ) ) ) |
7 |
|
gimghm |
⊢ ( 𝐼 ∈ ( 𝐺 GrpIso ( oppg ‘ 𝐺 ) ) → 𝐼 ∈ ( 𝐺 GrpHom ( oppg ‘ 𝐺 ) ) ) |
8 |
|
ghmmhm |
⊢ ( 𝐼 ∈ ( 𝐺 GrpHom ( oppg ‘ 𝐺 ) ) → 𝐼 ∈ ( 𝐺 MndHom ( oppg ‘ 𝐺 ) ) ) |
9 |
4 6 7 8
|
4syl |
⊢ ( 𝐷 ∈ 𝑉 → 𝐼 ∈ ( 𝐺 MndHom ( oppg ‘ 𝐺 ) ) ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
11 |
1 2 10
|
symgtrf |
⊢ 𝑇 ⊆ ( Base ‘ 𝐺 ) |
12 |
|
sswrd |
⊢ ( 𝑇 ⊆ ( Base ‘ 𝐺 ) → Word 𝑇 ⊆ Word ( Base ‘ 𝐺 ) ) |
13 |
11 12
|
ax-mp |
⊢ Word 𝑇 ⊆ Word ( Base ‘ 𝐺 ) |
14 |
13
|
sseli |
⊢ ( 𝑊 ∈ Word 𝑇 → 𝑊 ∈ Word ( Base ‘ 𝐺 ) ) |
15 |
10
|
gsumwmhm |
⊢ ( ( 𝐼 ∈ ( 𝐺 MndHom ( oppg ‘ 𝐺 ) ) ∧ 𝑊 ∈ Word ( Base ‘ 𝐺 ) ) → ( 𝐼 ‘ ( 𝐺 Σg 𝑊 ) ) = ( ( oppg ‘ 𝐺 ) Σg ( 𝐼 ∘ 𝑊 ) ) ) |
16 |
9 14 15
|
syl2an |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) → ( 𝐼 ‘ ( 𝐺 Σg 𝑊 ) ) = ( ( oppg ‘ 𝐺 ) Σg ( 𝐼 ∘ 𝑊 ) ) ) |
17 |
10 3
|
grpinvf |
⊢ ( 𝐺 ∈ Grp → 𝐼 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐺 ) ) |
18 |
4 17
|
syl |
⊢ ( 𝐷 ∈ 𝑉 → 𝐼 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐺 ) ) |
19 |
|
wrdf |
⊢ ( 𝑊 ∈ Word 𝑇 → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑇 ) |
20 |
19
|
adantl |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑇 ) |
21 |
|
fss |
⊢ ( ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑇 ∧ 𝑇 ⊆ ( Base ‘ 𝐺 ) ) → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ ( Base ‘ 𝐺 ) ) |
22 |
20 11 21
|
sylancl |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ ( Base ‘ 𝐺 ) ) |
23 |
|
fco |
⊢ ( ( 𝐼 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐺 ) ∧ 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ ( Base ‘ 𝐺 ) ) → ( 𝐼 ∘ 𝑊 ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ ( Base ‘ 𝐺 ) ) |
24 |
18 22 23
|
syl2an2r |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) → ( 𝐼 ∘ 𝑊 ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ ( Base ‘ 𝐺 ) ) |
25 |
24
|
ffnd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) → ( 𝐼 ∘ 𝑊 ) Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
26 |
20
|
ffnd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) → 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
27 |
|
fvco2 |
⊢ ( ( 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐼 ∘ 𝑊 ) ‘ 𝑥 ) = ( 𝐼 ‘ ( 𝑊 ‘ 𝑥 ) ) ) |
28 |
26 27
|
sylan |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐼 ∘ 𝑊 ) ‘ 𝑥 ) = ( 𝐼 ‘ ( 𝑊 ‘ 𝑥 ) ) ) |
29 |
20
|
ffvelrnda |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ 𝑥 ) ∈ 𝑇 ) |
30 |
11 29
|
sselid |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ 𝑥 ) ∈ ( Base ‘ 𝐺 ) ) |
31 |
2 10 3
|
symginv |
⊢ ( ( 𝑊 ‘ 𝑥 ) ∈ ( Base ‘ 𝐺 ) → ( 𝐼 ‘ ( 𝑊 ‘ 𝑥 ) ) = ◡ ( 𝑊 ‘ 𝑥 ) ) |
32 |
30 31
|
syl |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝐼 ‘ ( 𝑊 ‘ 𝑥 ) ) = ◡ ( 𝑊 ‘ 𝑥 ) ) |
33 |
|
eqid |
⊢ ( pmTrsp ‘ 𝐷 ) = ( pmTrsp ‘ 𝐷 ) |
34 |
33 1
|
pmtrfcnv |
⊢ ( ( 𝑊 ‘ 𝑥 ) ∈ 𝑇 → ◡ ( 𝑊 ‘ 𝑥 ) = ( 𝑊 ‘ 𝑥 ) ) |
35 |
29 34
|
syl |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ◡ ( 𝑊 ‘ 𝑥 ) = ( 𝑊 ‘ 𝑥 ) ) |
36 |
28 32 35
|
3eqtrd |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐼 ∘ 𝑊 ) ‘ 𝑥 ) = ( 𝑊 ‘ 𝑥 ) ) |
37 |
25 26 36
|
eqfnfvd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) → ( 𝐼 ∘ 𝑊 ) = 𝑊 ) |
38 |
37
|
oveq2d |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) → ( ( oppg ‘ 𝐺 ) Σg ( 𝐼 ∘ 𝑊 ) ) = ( ( oppg ‘ 𝐺 ) Σg 𝑊 ) ) |
39 |
4
|
grpmndd |
⊢ ( 𝐷 ∈ 𝑉 → 𝐺 ∈ Mnd ) |
40 |
10 5
|
gsumwrev |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑊 ∈ Word ( Base ‘ 𝐺 ) ) → ( ( oppg ‘ 𝐺 ) Σg 𝑊 ) = ( 𝐺 Σg ( reverse ‘ 𝑊 ) ) ) |
41 |
39 14 40
|
syl2an |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) → ( ( oppg ‘ 𝐺 ) Σg 𝑊 ) = ( 𝐺 Σg ( reverse ‘ 𝑊 ) ) ) |
42 |
16 38 41
|
3eqtrd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) → ( 𝐼 ‘ ( 𝐺 Σg 𝑊 ) ) = ( 𝐺 Σg ( reverse ‘ 𝑊 ) ) ) |