| Step | Hyp | Ref | Expression | 
						
							| 1 |  | symggrp.1 | ⊢ 𝐺  =  ( SymGrp ‘ 𝐴 ) | 
						
							| 2 |  | eqid | ⊢ ( EndoFMnd ‘ 𝐴 )  =  ( EndoFMnd ‘ 𝐴 ) | 
						
							| 3 | 2 | efmndtset | ⊢ ( 𝐴  ∈  𝑉  →  ( ∏t ‘ ( 𝐴  ×  { 𝒫  𝐴 } ) )  =  ( TopSet ‘ ( EndoFMnd ‘ 𝐴 ) ) ) | 
						
							| 4 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 5 | 1 4 | symgbas | ⊢ ( Base ‘ 𝐺 )  =  { 𝑓  ∣  𝑓 : 𝐴 –1-1-onto→ 𝐴 } | 
						
							| 6 |  | fvexd | ⊢ ( 𝐴  ∈  𝑉  →  ( Base ‘ 𝐺 )  ∈  V ) | 
						
							| 7 | 5 6 | eqeltrrid | ⊢ ( 𝐴  ∈  𝑉  →  { 𝑓  ∣  𝑓 : 𝐴 –1-1-onto→ 𝐴 }  ∈  V ) | 
						
							| 8 |  | eqid | ⊢ ( ( EndoFMnd ‘ 𝐴 )  ↾s  { 𝑓  ∣  𝑓 : 𝐴 –1-1-onto→ 𝐴 } )  =  ( ( EndoFMnd ‘ 𝐴 )  ↾s  { 𝑓  ∣  𝑓 : 𝐴 –1-1-onto→ 𝐴 } ) | 
						
							| 9 |  | eqid | ⊢ ( TopSet ‘ ( EndoFMnd ‘ 𝐴 ) )  =  ( TopSet ‘ ( EndoFMnd ‘ 𝐴 ) ) | 
						
							| 10 | 8 9 | resstset | ⊢ ( { 𝑓  ∣  𝑓 : 𝐴 –1-1-onto→ 𝐴 }  ∈  V  →  ( TopSet ‘ ( EndoFMnd ‘ 𝐴 ) )  =  ( TopSet ‘ ( ( EndoFMnd ‘ 𝐴 )  ↾s  { 𝑓  ∣  𝑓 : 𝐴 –1-1-onto→ 𝐴 } ) ) ) | 
						
							| 11 | 7 10 | syl | ⊢ ( 𝐴  ∈  𝑉  →  ( TopSet ‘ ( EndoFMnd ‘ 𝐴 ) )  =  ( TopSet ‘ ( ( EndoFMnd ‘ 𝐴 )  ↾s  { 𝑓  ∣  𝑓 : 𝐴 –1-1-onto→ 𝐴 } ) ) ) | 
						
							| 12 |  | eqid | ⊢ { 𝑓  ∣  𝑓 : 𝐴 –1-1-onto→ 𝐴 }  =  { 𝑓  ∣  𝑓 : 𝐴 –1-1-onto→ 𝐴 } | 
						
							| 13 | 1 12 | symgval | ⊢ 𝐺  =  ( ( EndoFMnd ‘ 𝐴 )  ↾s  { 𝑓  ∣  𝑓 : 𝐴 –1-1-onto→ 𝐴 } ) | 
						
							| 14 | 13 | eqcomi | ⊢ ( ( EndoFMnd ‘ 𝐴 )  ↾s  { 𝑓  ∣  𝑓 : 𝐴 –1-1-onto→ 𝐴 } )  =  𝐺 | 
						
							| 15 | 14 | fveq2i | ⊢ ( TopSet ‘ ( ( EndoFMnd ‘ 𝐴 )  ↾s  { 𝑓  ∣  𝑓 : 𝐴 –1-1-onto→ 𝐴 } ) )  =  ( TopSet ‘ 𝐺 ) | 
						
							| 16 | 15 | a1i | ⊢ ( 𝐴  ∈  𝑉  →  ( TopSet ‘ ( ( EndoFMnd ‘ 𝐴 )  ↾s  { 𝑓  ∣  𝑓 : 𝐴 –1-1-onto→ 𝐴 } ) )  =  ( TopSet ‘ 𝐺 ) ) | 
						
							| 17 | 3 11 16 | 3eqtrd | ⊢ ( 𝐴  ∈  𝑉  →  ( ∏t ‘ ( 𝐴  ×  { 𝒫  𝐴 } ) )  =  ( TopSet ‘ 𝐺 ) ) |