Metamath Proof Explorer


Theorem t0dist

Description: Any two distinct points in a T_0 space are topologically distinguishable. (Contributed by Jeff Hankins, 1-Feb-2010)

Ref Expression
Hypothesis ist0.1 𝑋 = 𝐽
Assertion t0dist ( ( 𝐽 ∈ Kol2 ∧ ( 𝐴𝑋𝐵𝑋𝐴𝐵 ) ) → ∃ 𝑜𝐽 ¬ ( 𝐴𝑜𝐵𝑜 ) )

Proof

Step Hyp Ref Expression
1 ist0.1 𝑋 = 𝐽
2 1 t0sep ( ( 𝐽 ∈ Kol2 ∧ ( 𝐴𝑋𝐵𝑋 ) ) → ( ∀ 𝑜𝐽 ( 𝐴𝑜𝐵𝑜 ) → 𝐴 = 𝐵 ) )
3 2 necon3ad ( ( 𝐽 ∈ Kol2 ∧ ( 𝐴𝑋𝐵𝑋 ) ) → ( 𝐴𝐵 → ¬ ∀ 𝑜𝐽 ( 𝐴𝑜𝐵𝑜 ) ) )
4 3 exp32 ( 𝐽 ∈ Kol2 → ( 𝐴𝑋 → ( 𝐵𝑋 → ( 𝐴𝐵 → ¬ ∀ 𝑜𝐽 ( 𝐴𝑜𝐵𝑜 ) ) ) ) )
5 4 3imp2 ( ( 𝐽 ∈ Kol2 ∧ ( 𝐴𝑋𝐵𝑋𝐴𝐵 ) ) → ¬ ∀ 𝑜𝐽 ( 𝐴𝑜𝐵𝑜 ) )
6 rexnal ( ∃ 𝑜𝐽 ¬ ( 𝐴𝑜𝐵𝑜 ) ↔ ¬ ∀ 𝑜𝐽 ( 𝐴𝑜𝐵𝑜 ) )
7 5 6 sylibr ( ( 𝐽 ∈ Kol2 ∧ ( 𝐴𝑋𝐵𝑋𝐴𝐵 ) ) → ∃ 𝑜𝐽 ¬ ( 𝐴𝑜𝐵𝑜 ) )