Metamath Proof Explorer


Theorem t0hmph

Description: T_0 is a topological property. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Assertion t0hmph ( 𝐽𝐾 → ( 𝐽 ∈ Kol2 → 𝐾 ∈ Kol2 ) )

Proof

Step Hyp Ref Expression
1 t0top ( 𝐽 ∈ Kol2 → 𝐽 ∈ Top )
2 cnt0 ( ( 𝐽 ∈ Kol2 ∧ 𝑓 : 𝐾1-1 𝐽𝑓 ∈ ( 𝐾 Cn 𝐽 ) ) → 𝐾 ∈ Kol2 )
3 1 2 haushmphlem ( 𝐽𝐾 → ( 𝐽 ∈ Kol2 → 𝐾 ∈ Kol2 ) )