Step |
Hyp |
Ref |
Expression |
1 |
|
ist0.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
1
|
ist0 |
⊢ ( 𝐽 ∈ Kol2 ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ∀ 𝑥 ∈ 𝐽 ( 𝑦 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) → 𝑦 = 𝑧 ) ) ) |
3 |
2
|
simprbi |
⊢ ( 𝐽 ∈ Kol2 → ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ∀ 𝑥 ∈ 𝐽 ( 𝑦 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) → 𝑦 = 𝑧 ) ) |
4 |
|
eleq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥 ) ) |
5 |
4
|
bibi1d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) ↔ ( 𝐴 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) ) ) |
6 |
5
|
ralbidv |
⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑥 ∈ 𝐽 ( 𝑦 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) ) ) |
7 |
|
eqeq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 = 𝑧 ↔ 𝐴 = 𝑧 ) ) |
8 |
6 7
|
imbi12d |
⊢ ( 𝑦 = 𝐴 → ( ( ∀ 𝑥 ∈ 𝐽 ( 𝑦 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) → 𝑦 = 𝑧 ) ↔ ( ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) → 𝐴 = 𝑧 ) ) ) |
9 |
|
eleq1 |
⊢ ( 𝑧 = 𝐵 → ( 𝑧 ∈ 𝑥 ↔ 𝐵 ∈ 𝑥 ) ) |
10 |
9
|
bibi2d |
⊢ ( 𝑧 = 𝐵 → ( ( 𝐴 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) ↔ ( 𝐴 ∈ 𝑥 ↔ 𝐵 ∈ 𝑥 ) ) ) |
11 |
10
|
ralbidv |
⊢ ( 𝑧 = 𝐵 → ( ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ↔ 𝐵 ∈ 𝑥 ) ) ) |
12 |
|
eqeq2 |
⊢ ( 𝑧 = 𝐵 → ( 𝐴 = 𝑧 ↔ 𝐴 = 𝐵 ) ) |
13 |
11 12
|
imbi12d |
⊢ ( 𝑧 = 𝐵 → ( ( ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) → 𝐴 = 𝑧 ) ↔ ( ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ↔ 𝐵 ∈ 𝑥 ) → 𝐴 = 𝐵 ) ) ) |
14 |
8 13
|
rspc2va |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ∀ 𝑥 ∈ 𝐽 ( 𝑦 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) → 𝑦 = 𝑧 ) ) → ( ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ↔ 𝐵 ∈ 𝑥 ) → 𝐴 = 𝐵 ) ) |
15 |
14
|
ancoms |
⊢ ( ( ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ∀ 𝑥 ∈ 𝐽 ( 𝑦 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) → 𝑦 = 𝑧 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ↔ 𝐵 ∈ 𝑥 ) → 𝐴 = 𝐵 ) ) |
16 |
3 15
|
sylan |
⊢ ( ( 𝐽 ∈ Kol2 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ↔ 𝐵 ∈ 𝑥 ) → 𝐴 = 𝐵 ) ) |