| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ist0.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 | 1 | ist0 | ⊢ ( 𝐽  ∈  Kol2  ↔  ( 𝐽  ∈  Top  ∧  ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ∀ 𝑥  ∈  𝐽 ( 𝑦  ∈  𝑥  ↔  𝑧  ∈  𝑥 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 3 | 2 | simprbi | ⊢ ( 𝐽  ∈  Kol2  →  ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ∀ 𝑥  ∈  𝐽 ( 𝑦  ∈  𝑥  ↔  𝑧  ∈  𝑥 )  →  𝑦  =  𝑧 ) ) | 
						
							| 4 |  | eleq1 | ⊢ ( 𝑦  =  𝐴  →  ( 𝑦  ∈  𝑥  ↔  𝐴  ∈  𝑥 ) ) | 
						
							| 5 | 4 | bibi1d | ⊢ ( 𝑦  =  𝐴  →  ( ( 𝑦  ∈  𝑥  ↔  𝑧  ∈  𝑥 )  ↔  ( 𝐴  ∈  𝑥  ↔  𝑧  ∈  𝑥 ) ) ) | 
						
							| 6 | 5 | ralbidv | ⊢ ( 𝑦  =  𝐴  →  ( ∀ 𝑥  ∈  𝐽 ( 𝑦  ∈  𝑥  ↔  𝑧  ∈  𝑥 )  ↔  ∀ 𝑥  ∈  𝐽 ( 𝐴  ∈  𝑥  ↔  𝑧  ∈  𝑥 ) ) ) | 
						
							| 7 |  | eqeq1 | ⊢ ( 𝑦  =  𝐴  →  ( 𝑦  =  𝑧  ↔  𝐴  =  𝑧 ) ) | 
						
							| 8 | 6 7 | imbi12d | ⊢ ( 𝑦  =  𝐴  →  ( ( ∀ 𝑥  ∈  𝐽 ( 𝑦  ∈  𝑥  ↔  𝑧  ∈  𝑥 )  →  𝑦  =  𝑧 )  ↔  ( ∀ 𝑥  ∈  𝐽 ( 𝐴  ∈  𝑥  ↔  𝑧  ∈  𝑥 )  →  𝐴  =  𝑧 ) ) ) | 
						
							| 9 |  | eleq1 | ⊢ ( 𝑧  =  𝐵  →  ( 𝑧  ∈  𝑥  ↔  𝐵  ∈  𝑥 ) ) | 
						
							| 10 | 9 | bibi2d | ⊢ ( 𝑧  =  𝐵  →  ( ( 𝐴  ∈  𝑥  ↔  𝑧  ∈  𝑥 )  ↔  ( 𝐴  ∈  𝑥  ↔  𝐵  ∈  𝑥 ) ) ) | 
						
							| 11 | 10 | ralbidv | ⊢ ( 𝑧  =  𝐵  →  ( ∀ 𝑥  ∈  𝐽 ( 𝐴  ∈  𝑥  ↔  𝑧  ∈  𝑥 )  ↔  ∀ 𝑥  ∈  𝐽 ( 𝐴  ∈  𝑥  ↔  𝐵  ∈  𝑥 ) ) ) | 
						
							| 12 |  | eqeq2 | ⊢ ( 𝑧  =  𝐵  →  ( 𝐴  =  𝑧  ↔  𝐴  =  𝐵 ) ) | 
						
							| 13 | 11 12 | imbi12d | ⊢ ( 𝑧  =  𝐵  →  ( ( ∀ 𝑥  ∈  𝐽 ( 𝐴  ∈  𝑥  ↔  𝑧  ∈  𝑥 )  →  𝐴  =  𝑧 )  ↔  ( ∀ 𝑥  ∈  𝐽 ( 𝐴  ∈  𝑥  ↔  𝐵  ∈  𝑥 )  →  𝐴  =  𝐵 ) ) ) | 
						
							| 14 | 8 13 | rspc2va | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ∀ 𝑥  ∈  𝐽 ( 𝑦  ∈  𝑥  ↔  𝑧  ∈  𝑥 )  →  𝑦  =  𝑧 ) )  →  ( ∀ 𝑥  ∈  𝐽 ( 𝐴  ∈  𝑥  ↔  𝐵  ∈  𝑥 )  →  𝐴  =  𝐵 ) ) | 
						
							| 15 | 14 | ancoms | ⊢ ( ( ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ∀ 𝑥  ∈  𝐽 ( 𝑦  ∈  𝑥  ↔  𝑧  ∈  𝑥 )  →  𝑦  =  𝑧 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( ∀ 𝑥  ∈  𝐽 ( 𝐴  ∈  𝑥  ↔  𝐵  ∈  𝑥 )  →  𝐴  =  𝐵 ) ) | 
						
							| 16 | 3 15 | sylan | ⊢ ( ( 𝐽  ∈  Kol2  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( ∀ 𝑥  ∈  𝐽 ( 𝐴  ∈  𝑥  ↔  𝐵  ∈  𝑥 )  →  𝐴  =  𝐵 ) ) |