| Step |
Hyp |
Ref |
Expression |
| 1 |
|
t1connperf.1 |
⊢ 𝑋 = ∪ 𝐽 |
| 2 |
|
simplr |
⊢ ( ( ( 𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝑋 ∧ { 𝑥 } ∈ 𝐽 ) ) → 𝐽 ∈ Conn ) |
| 3 |
|
simprr |
⊢ ( ( ( 𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝑋 ∧ { 𝑥 } ∈ 𝐽 ) ) → { 𝑥 } ∈ 𝐽 ) |
| 4 |
|
vex |
⊢ 𝑥 ∈ V |
| 5 |
4
|
snnz |
⊢ { 𝑥 } ≠ ∅ |
| 6 |
5
|
a1i |
⊢ ( ( ( 𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝑋 ∧ { 𝑥 } ∈ 𝐽 ) ) → { 𝑥 } ≠ ∅ ) |
| 7 |
1
|
t1sncld |
⊢ ( ( 𝐽 ∈ Fre ∧ 𝑥 ∈ 𝑋 ) → { 𝑥 } ∈ ( Clsd ‘ 𝐽 ) ) |
| 8 |
7
|
ad2ant2r |
⊢ ( ( ( 𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝑋 ∧ { 𝑥 } ∈ 𝐽 ) ) → { 𝑥 } ∈ ( Clsd ‘ 𝐽 ) ) |
| 9 |
1 2 3 6 8
|
connclo |
⊢ ( ( ( 𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝑋 ∧ { 𝑥 } ∈ 𝐽 ) ) → { 𝑥 } = 𝑋 ) |
| 10 |
4
|
ensn1 |
⊢ { 𝑥 } ≈ 1o |
| 11 |
9 10
|
eqbrtrrdi |
⊢ ( ( ( 𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝑋 ∧ { 𝑥 } ∈ 𝐽 ) ) → 𝑋 ≈ 1o ) |
| 12 |
11
|
rexlimdvaa |
⊢ ( ( 𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ) → ( ∃ 𝑥 ∈ 𝑋 { 𝑥 } ∈ 𝐽 → 𝑋 ≈ 1o ) ) |
| 13 |
12
|
con3d |
⊢ ( ( 𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ) → ( ¬ 𝑋 ≈ 1o → ¬ ∃ 𝑥 ∈ 𝑋 { 𝑥 } ∈ 𝐽 ) ) |
| 14 |
|
ralnex |
⊢ ( ∀ 𝑥 ∈ 𝑋 ¬ { 𝑥 } ∈ 𝐽 ↔ ¬ ∃ 𝑥 ∈ 𝑋 { 𝑥 } ∈ 𝐽 ) |
| 15 |
13 14
|
imbitrrdi |
⊢ ( ( 𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ) → ( ¬ 𝑋 ≈ 1o → ∀ 𝑥 ∈ 𝑋 ¬ { 𝑥 } ∈ 𝐽 ) ) |
| 16 |
|
t1top |
⊢ ( 𝐽 ∈ Fre → 𝐽 ∈ Top ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ) → 𝐽 ∈ Top ) |
| 18 |
1
|
isperf3 |
⊢ ( 𝐽 ∈ Perf ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝑋 ¬ { 𝑥 } ∈ 𝐽 ) ) |
| 19 |
18
|
baib |
⊢ ( 𝐽 ∈ Top → ( 𝐽 ∈ Perf ↔ ∀ 𝑥 ∈ 𝑋 ¬ { 𝑥 } ∈ 𝐽 ) ) |
| 20 |
17 19
|
syl |
⊢ ( ( 𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ) → ( 𝐽 ∈ Perf ↔ ∀ 𝑥 ∈ 𝑋 ¬ { 𝑥 } ∈ 𝐽 ) ) |
| 21 |
15 20
|
sylibrd |
⊢ ( ( 𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ) → ( ¬ 𝑋 ≈ 1o → 𝐽 ∈ Perf ) ) |
| 22 |
21
|
3impia |
⊢ ( ( 𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ∧ ¬ 𝑋 ≈ 1o ) → 𝐽 ∈ Perf ) |