Metamath Proof Explorer


Theorem t1hmph

Description: T_1 is a topological property. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Assertion t1hmph ( 𝐽𝐾 → ( 𝐽 ∈ Fre → 𝐾 ∈ Fre ) )

Proof

Step Hyp Ref Expression
1 t1top ( 𝐽 ∈ Fre → 𝐽 ∈ Top )
2 cnt1 ( ( 𝐽 ∈ Fre ∧ 𝑓 : 𝐾1-1 𝐽𝑓 ∈ ( 𝐾 Cn 𝐽 ) ) → 𝐾 ∈ Fre )
3 1 2 haushmphlem ( 𝐽𝐾 → ( 𝐽 ∈ Fre → 𝐾 ∈ Fre ) )