Metamath Proof Explorer


Theorem t1r0

Description: A T_1 space is R_0. That is, the Kolmogorov quotient of a T_1 space is also T_1 (because they are homeomorphic). (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Assertion t1r0 ( 𝐽 ∈ Fre → ( KQ ‘ 𝐽 ) ∈ Fre )

Proof

Step Hyp Ref Expression
1 t1t0 ( 𝐽 ∈ Fre → 𝐽 ∈ Kol2 )
2 kqhmph ( 𝐽 ∈ Kol2 ↔ 𝐽 ≃ ( KQ ‘ 𝐽 ) )
3 1 2 sylib ( 𝐽 ∈ Fre → 𝐽 ≃ ( KQ ‘ 𝐽 ) )
4 t1hmph ( 𝐽 ≃ ( KQ ‘ 𝐽 ) → ( 𝐽 ∈ Fre → ( KQ ‘ 𝐽 ) ∈ Fre ) )
5 3 4 mpcom ( 𝐽 ∈ Fre → ( KQ ‘ 𝐽 ) ∈ Fre )