| Step | Hyp | Ref | Expression | 
						
							| 1 |  | t1sep.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | simpr3 | ⊢ ( ( 𝐽  ∈  Fre  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐴  ≠  𝐵 ) )  →  𝐴  ≠  𝐵 ) | 
						
							| 3 | 1 | t1sep2 | ⊢ ( ( 𝐽  ∈  Fre  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ∀ 𝑜  ∈  𝐽 ( 𝐴  ∈  𝑜  →  𝐵  ∈  𝑜 )  →  𝐴  =  𝐵 ) ) | 
						
							| 4 | 3 | 3adant3r3 | ⊢ ( ( 𝐽  ∈  Fre  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐴  ≠  𝐵 ) )  →  ( ∀ 𝑜  ∈  𝐽 ( 𝐴  ∈  𝑜  →  𝐵  ∈  𝑜 )  →  𝐴  =  𝐵 ) ) | 
						
							| 5 | 4 | necon3ad | ⊢ ( ( 𝐽  ∈  Fre  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐴  ≠  𝐵 ) )  →  ( 𝐴  ≠  𝐵  →  ¬  ∀ 𝑜  ∈  𝐽 ( 𝐴  ∈  𝑜  →  𝐵  ∈  𝑜 ) ) ) | 
						
							| 6 | 2 5 | mpd | ⊢ ( ( 𝐽  ∈  Fre  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐴  ≠  𝐵 ) )  →  ¬  ∀ 𝑜  ∈  𝐽 ( 𝐴  ∈  𝑜  →  𝐵  ∈  𝑜 ) ) | 
						
							| 7 |  | rexanali | ⊢ ( ∃ 𝑜  ∈  𝐽 ( 𝐴  ∈  𝑜  ∧  ¬  𝐵  ∈  𝑜 )  ↔  ¬  ∀ 𝑜  ∈  𝐽 ( 𝐴  ∈  𝑜  →  𝐵  ∈  𝑜 ) ) | 
						
							| 8 | 6 7 | sylibr | ⊢ ( ( 𝐽  ∈  Fre  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐴  ≠  𝐵 ) )  →  ∃ 𝑜  ∈  𝐽 ( 𝐴  ∈  𝑜  ∧  ¬  𝐵  ∈  𝑜 ) ) |