Metamath Proof Explorer


Theorem t1sep2

Description: Any two points in a T_1 space which have no separation are equal. (Contributed by Jeff Hankins, 1-Feb-2010)

Ref Expression
Hypothesis t1sep.1 𝑋 = 𝐽
Assertion t1sep2 ( ( 𝐽 ∈ Fre ∧ 𝐴𝑋𝐵𝑋 ) → ( ∀ 𝑜𝐽 ( 𝐴𝑜𝐵𝑜 ) → 𝐴 = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 t1sep.1 𝑋 = 𝐽
2 t1top ( 𝐽 ∈ Fre → 𝐽 ∈ Top )
3 1 toptopon ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) )
4 2 3 sylib ( 𝐽 ∈ Fre → 𝐽 ∈ ( TopOn ‘ 𝑋 ) )
5 ist1-2 ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ∈ Fre ↔ ∀ 𝑥𝑋𝑦𝑋 ( ∀ 𝑜𝐽 ( 𝑥𝑜𝑦𝑜 ) → 𝑥 = 𝑦 ) ) )
6 4 5 syl ( 𝐽 ∈ Fre → ( 𝐽 ∈ Fre ↔ ∀ 𝑥𝑋𝑦𝑋 ( ∀ 𝑜𝐽 ( 𝑥𝑜𝑦𝑜 ) → 𝑥 = 𝑦 ) ) )
7 6 ibi ( 𝐽 ∈ Fre → ∀ 𝑥𝑋𝑦𝑋 ( ∀ 𝑜𝐽 ( 𝑥𝑜𝑦𝑜 ) → 𝑥 = 𝑦 ) )
8 eleq1 ( 𝑥 = 𝐴 → ( 𝑥𝑜𝐴𝑜 ) )
9 8 imbi1d ( 𝑥 = 𝐴 → ( ( 𝑥𝑜𝑦𝑜 ) ↔ ( 𝐴𝑜𝑦𝑜 ) ) )
10 9 ralbidv ( 𝑥 = 𝐴 → ( ∀ 𝑜𝐽 ( 𝑥𝑜𝑦𝑜 ) ↔ ∀ 𝑜𝐽 ( 𝐴𝑜𝑦𝑜 ) ) )
11 eqeq1 ( 𝑥 = 𝐴 → ( 𝑥 = 𝑦𝐴 = 𝑦 ) )
12 10 11 imbi12d ( 𝑥 = 𝐴 → ( ( ∀ 𝑜𝐽 ( 𝑥𝑜𝑦𝑜 ) → 𝑥 = 𝑦 ) ↔ ( ∀ 𝑜𝐽 ( 𝐴𝑜𝑦𝑜 ) → 𝐴 = 𝑦 ) ) )
13 eleq1 ( 𝑦 = 𝐵 → ( 𝑦𝑜𝐵𝑜 ) )
14 13 imbi2d ( 𝑦 = 𝐵 → ( ( 𝐴𝑜𝑦𝑜 ) ↔ ( 𝐴𝑜𝐵𝑜 ) ) )
15 14 ralbidv ( 𝑦 = 𝐵 → ( ∀ 𝑜𝐽 ( 𝐴𝑜𝑦𝑜 ) ↔ ∀ 𝑜𝐽 ( 𝐴𝑜𝐵𝑜 ) ) )
16 eqeq2 ( 𝑦 = 𝐵 → ( 𝐴 = 𝑦𝐴 = 𝐵 ) )
17 15 16 imbi12d ( 𝑦 = 𝐵 → ( ( ∀ 𝑜𝐽 ( 𝐴𝑜𝑦𝑜 ) → 𝐴 = 𝑦 ) ↔ ( ∀ 𝑜𝐽 ( 𝐴𝑜𝐵𝑜 ) → 𝐴 = 𝐵 ) ) )
18 12 17 rspc2v ( ( 𝐴𝑋𝐵𝑋 ) → ( ∀ 𝑥𝑋𝑦𝑋 ( ∀ 𝑜𝐽 ( 𝑥𝑜𝑦𝑜 ) → 𝑥 = 𝑦 ) → ( ∀ 𝑜𝐽 ( 𝐴𝑜𝐵𝑜 ) → 𝐴 = 𝐵 ) ) )
19 7 18 mpan9 ( ( 𝐽 ∈ Fre ∧ ( 𝐴𝑋𝐵𝑋 ) ) → ( ∀ 𝑜𝐽 ( 𝐴𝑜𝐵𝑜 ) → 𝐴 = 𝐵 ) )
20 19 3impb ( ( 𝐽 ∈ Fre ∧ 𝐴𝑋𝐵𝑋 ) → ( ∀ 𝑜𝐽 ( 𝐴𝑜𝐵𝑜 ) → 𝐴 = 𝐵 ) )