| Step |
Hyp |
Ref |
Expression |
| 1 |
|
t1sep.1 |
⊢ 𝑋 = ∪ 𝐽 |
| 2 |
|
t1top |
⊢ ( 𝐽 ∈ Fre → 𝐽 ∈ Top ) |
| 3 |
1
|
toptopon |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 4 |
2 3
|
sylib |
⊢ ( 𝐽 ∈ Fre → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 5 |
|
ist1-2 |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ∈ Fre ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ) ) |
| 6 |
4 5
|
syl |
⊢ ( 𝐽 ∈ Fre → ( 𝐽 ∈ Fre ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ) ) |
| 7 |
6
|
ibi |
⊢ ( 𝐽 ∈ Fre → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ) |
| 8 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝑜 ↔ 𝐴 ∈ 𝑜 ) ) |
| 9 |
8
|
imbi1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) ↔ ( 𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) ) ) |
| 10 |
9
|
ralbidv |
⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) ↔ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) ) ) |
| 11 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 = 𝑦 ↔ 𝐴 = 𝑦 ) ) |
| 12 |
10 11
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ↔ ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝐴 = 𝑦 ) ) ) |
| 13 |
|
eleq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜 ) ) |
| 14 |
13
|
imbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) ↔ ( 𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜 ) ) ) |
| 15 |
14
|
ralbidv |
⊢ ( 𝑦 = 𝐵 → ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) ↔ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜 ) ) ) |
| 16 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 = 𝑦 ↔ 𝐴 = 𝐵 ) ) |
| 17 |
15 16
|
imbi12d |
⊢ ( 𝑦 = 𝐵 → ( ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝐴 = 𝑦 ) ↔ ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜 ) → 𝐴 = 𝐵 ) ) ) |
| 18 |
12 17
|
rspc2v |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) → ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜 ) → 𝐴 = 𝐵 ) ) ) |
| 19 |
7 18
|
mpan9 |
⊢ ( ( 𝐽 ∈ Fre ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜 ) → 𝐴 = 𝐵 ) ) |
| 20 |
19
|
3impb |
⊢ ( ( 𝐽 ∈ Fre ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜 ) → 𝐴 = 𝐵 ) ) |