| Step | Hyp | Ref | Expression | 
						
							| 1 |  | t1top | ⊢ ( 𝐽  ∈  Fre  →  𝐽  ∈  Top ) | 
						
							| 2 |  | toptopon2 | ⊢ ( 𝐽  ∈  Top  ↔  𝐽  ∈  ( TopOn ‘ ∪  𝐽 ) ) | 
						
							| 3 | 1 2 | sylib | ⊢ ( 𝐽  ∈  Fre  →  𝐽  ∈  ( TopOn ‘ ∪  𝐽 ) ) | 
						
							| 4 |  | biimp | ⊢ ( ( 𝑥  ∈  𝑜  ↔  𝑦  ∈  𝑜 )  →  ( 𝑥  ∈  𝑜  →  𝑦  ∈  𝑜 ) ) | 
						
							| 5 | 4 | ralimi | ⊢ ( ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  ↔  𝑦  ∈  𝑜 )  →  ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  →  𝑦  ∈  𝑜 ) ) | 
						
							| 6 | 5 | imim1i | ⊢ ( ( ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  →  𝑦  ∈  𝑜 )  →  𝑥  =  𝑦 )  →  ( ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  ↔  𝑦  ∈  𝑜 )  →  𝑥  =  𝑦 ) ) | 
						
							| 7 | 6 | ralimi | ⊢ ( ∀ 𝑦  ∈  ∪  𝐽 ( ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  →  𝑦  ∈  𝑜 )  →  𝑥  =  𝑦 )  →  ∀ 𝑦  ∈  ∪  𝐽 ( ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  ↔  𝑦  ∈  𝑜 )  →  𝑥  =  𝑦 ) ) | 
						
							| 8 | 7 | ralimi | ⊢ ( ∀ 𝑥  ∈  ∪  𝐽 ∀ 𝑦  ∈  ∪  𝐽 ( ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  →  𝑦  ∈  𝑜 )  →  𝑥  =  𝑦 )  →  ∀ 𝑥  ∈  ∪  𝐽 ∀ 𝑦  ∈  ∪  𝐽 ( ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  ↔  𝑦  ∈  𝑜 )  →  𝑥  =  𝑦 ) ) | 
						
							| 9 | 8 | a1i | ⊢ ( 𝐽  ∈  ( TopOn ‘ ∪  𝐽 )  →  ( ∀ 𝑥  ∈  ∪  𝐽 ∀ 𝑦  ∈  ∪  𝐽 ( ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  →  𝑦  ∈  𝑜 )  →  𝑥  =  𝑦 )  →  ∀ 𝑥  ∈  ∪  𝐽 ∀ 𝑦  ∈  ∪  𝐽 ( ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  ↔  𝑦  ∈  𝑜 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 10 |  | ist1-2 | ⊢ ( 𝐽  ∈  ( TopOn ‘ ∪  𝐽 )  →  ( 𝐽  ∈  Fre  ↔  ∀ 𝑥  ∈  ∪  𝐽 ∀ 𝑦  ∈  ∪  𝐽 ( ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  →  𝑦  ∈  𝑜 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 11 |  | ist0-2 | ⊢ ( 𝐽  ∈  ( TopOn ‘ ∪  𝐽 )  →  ( 𝐽  ∈  Kol2  ↔  ∀ 𝑥  ∈  ∪  𝐽 ∀ 𝑦  ∈  ∪  𝐽 ( ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  ↔  𝑦  ∈  𝑜 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 12 | 9 10 11 | 3imtr4d | ⊢ ( 𝐽  ∈  ( TopOn ‘ ∪  𝐽 )  →  ( 𝐽  ∈  Fre  →  𝐽  ∈  Kol2 ) ) | 
						
							| 13 | 3 12 | mpcom | ⊢ ( 𝐽  ∈  Fre  →  𝐽  ∈  Kol2 ) |