Metamath Proof Explorer


Theorem tan0

Description: The value of the tangent function at zero is zero. (Contributed by David A. Wheeler, 16-Mar-2014)

Ref Expression
Assertion tan0 ( tan ‘ 0 ) = 0

Proof

Step Hyp Ref Expression
1 0cn 0 ∈ ℂ
2 cos0 ( cos ‘ 0 ) = 1
3 ax-1ne0 1 ≠ 0
4 2 3 eqnetri ( cos ‘ 0 ) ≠ 0
5 tanval ( ( 0 ∈ ℂ ∧ ( cos ‘ 0 ) ≠ 0 ) → ( tan ‘ 0 ) = ( ( sin ‘ 0 ) / ( cos ‘ 0 ) ) )
6 1 4 5 mp2an ( tan ‘ 0 ) = ( ( sin ‘ 0 ) / ( cos ‘ 0 ) )
7 sin0 ( sin ‘ 0 ) = 0
8 7 oveq1i ( ( sin ‘ 0 ) / ( cos ‘ 0 ) ) = ( 0 / ( cos ‘ 0 ) )
9 ax-1cn 1 ∈ ℂ
10 2 9 eqeltri ( cos ‘ 0 ) ∈ ℂ
11 10 4 div0i ( 0 / ( cos ‘ 0 ) ) = 0
12 6 8 11 3eqtri ( tan ‘ 0 ) = 0