Metamath Proof Explorer


Theorem tan4thpi

Description: The tangent of _pi / 4 . (Contributed by Mario Carneiro, 5-Apr-2015)

Ref Expression
Assertion tan4thpi ( tan ‘ ( π / 4 ) ) = 1

Proof

Step Hyp Ref Expression
1 pire π ∈ ℝ
2 4nn 4 ∈ ℕ
3 nndivre ( ( π ∈ ℝ ∧ 4 ∈ ℕ ) → ( π / 4 ) ∈ ℝ )
4 1 2 3 mp2an ( π / 4 ) ∈ ℝ
5 4 recni ( π / 4 ) ∈ ℂ
6 sincos4thpi ( ( sin ‘ ( π / 4 ) ) = ( 1 / ( √ ‘ 2 ) ) ∧ ( cos ‘ ( π / 4 ) ) = ( 1 / ( √ ‘ 2 ) ) )
7 6 simpri ( cos ‘ ( π / 4 ) ) = ( 1 / ( √ ‘ 2 ) )
8 sqrt2re ( √ ‘ 2 ) ∈ ℝ
9 8 recni ( √ ‘ 2 ) ∈ ℂ
10 2re 2 ∈ ℝ
11 0le2 0 ≤ 2
12 resqrtth ( ( 2 ∈ ℝ ∧ 0 ≤ 2 ) → ( ( √ ‘ 2 ) ↑ 2 ) = 2 )
13 10 11 12 mp2an ( ( √ ‘ 2 ) ↑ 2 ) = 2
14 2ne0 2 ≠ 0
15 13 14 eqnetri ( ( √ ‘ 2 ) ↑ 2 ) ≠ 0
16 sqne0 ( ( √ ‘ 2 ) ∈ ℂ → ( ( ( √ ‘ 2 ) ↑ 2 ) ≠ 0 ↔ ( √ ‘ 2 ) ≠ 0 ) )
17 9 16 ax-mp ( ( ( √ ‘ 2 ) ↑ 2 ) ≠ 0 ↔ ( √ ‘ 2 ) ≠ 0 )
18 15 17 mpbi ( √ ‘ 2 ) ≠ 0
19 recne0 ( ( ( √ ‘ 2 ) ∈ ℂ ∧ ( √ ‘ 2 ) ≠ 0 ) → ( 1 / ( √ ‘ 2 ) ) ≠ 0 )
20 9 18 19 mp2an ( 1 / ( √ ‘ 2 ) ) ≠ 0
21 7 20 eqnetri ( cos ‘ ( π / 4 ) ) ≠ 0
22 tanval ( ( ( π / 4 ) ∈ ℂ ∧ ( cos ‘ ( π / 4 ) ) ≠ 0 ) → ( tan ‘ ( π / 4 ) ) = ( ( sin ‘ ( π / 4 ) ) / ( cos ‘ ( π / 4 ) ) ) )
23 5 21 22 mp2an ( tan ‘ ( π / 4 ) ) = ( ( sin ‘ ( π / 4 ) ) / ( cos ‘ ( π / 4 ) ) )
24 6 simpli ( sin ‘ ( π / 4 ) ) = ( 1 / ( √ ‘ 2 ) )
25 24 7 oveq12i ( ( sin ‘ ( π / 4 ) ) / ( cos ‘ ( π / 4 ) ) ) = ( ( 1 / ( √ ‘ 2 ) ) / ( 1 / ( √ ‘ 2 ) ) )
26 9 18 reccli ( 1 / ( √ ‘ 2 ) ) ∈ ℂ
27 26 20 dividi ( ( 1 / ( √ ‘ 2 ) ) / ( 1 / ( √ ‘ 2 ) ) ) = 1
28 23 25 27 3eqtri ( tan ‘ ( π / 4 ) ) = 1