| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pire |
⊢ π ∈ ℝ |
| 2 |
|
4nn |
⊢ 4 ∈ ℕ |
| 3 |
|
nndivre |
⊢ ( ( π ∈ ℝ ∧ 4 ∈ ℕ ) → ( π / 4 ) ∈ ℝ ) |
| 4 |
1 2 3
|
mp2an |
⊢ ( π / 4 ) ∈ ℝ |
| 5 |
4
|
recni |
⊢ ( π / 4 ) ∈ ℂ |
| 6 |
|
sincos4thpi |
⊢ ( ( sin ‘ ( π / 4 ) ) = ( 1 / ( √ ‘ 2 ) ) ∧ ( cos ‘ ( π / 4 ) ) = ( 1 / ( √ ‘ 2 ) ) ) |
| 7 |
6
|
simpri |
⊢ ( cos ‘ ( π / 4 ) ) = ( 1 / ( √ ‘ 2 ) ) |
| 8 |
|
sqrt2re |
⊢ ( √ ‘ 2 ) ∈ ℝ |
| 9 |
8
|
recni |
⊢ ( √ ‘ 2 ) ∈ ℂ |
| 10 |
|
2re |
⊢ 2 ∈ ℝ |
| 11 |
|
0le2 |
⊢ 0 ≤ 2 |
| 12 |
|
resqrtth |
⊢ ( ( 2 ∈ ℝ ∧ 0 ≤ 2 ) → ( ( √ ‘ 2 ) ↑ 2 ) = 2 ) |
| 13 |
10 11 12
|
mp2an |
⊢ ( ( √ ‘ 2 ) ↑ 2 ) = 2 |
| 14 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 15 |
13 14
|
eqnetri |
⊢ ( ( √ ‘ 2 ) ↑ 2 ) ≠ 0 |
| 16 |
|
sqne0 |
⊢ ( ( √ ‘ 2 ) ∈ ℂ → ( ( ( √ ‘ 2 ) ↑ 2 ) ≠ 0 ↔ ( √ ‘ 2 ) ≠ 0 ) ) |
| 17 |
9 16
|
ax-mp |
⊢ ( ( ( √ ‘ 2 ) ↑ 2 ) ≠ 0 ↔ ( √ ‘ 2 ) ≠ 0 ) |
| 18 |
15 17
|
mpbi |
⊢ ( √ ‘ 2 ) ≠ 0 |
| 19 |
|
recne0 |
⊢ ( ( ( √ ‘ 2 ) ∈ ℂ ∧ ( √ ‘ 2 ) ≠ 0 ) → ( 1 / ( √ ‘ 2 ) ) ≠ 0 ) |
| 20 |
9 18 19
|
mp2an |
⊢ ( 1 / ( √ ‘ 2 ) ) ≠ 0 |
| 21 |
7 20
|
eqnetri |
⊢ ( cos ‘ ( π / 4 ) ) ≠ 0 |
| 22 |
|
tanval |
⊢ ( ( ( π / 4 ) ∈ ℂ ∧ ( cos ‘ ( π / 4 ) ) ≠ 0 ) → ( tan ‘ ( π / 4 ) ) = ( ( sin ‘ ( π / 4 ) ) / ( cos ‘ ( π / 4 ) ) ) ) |
| 23 |
5 21 22
|
mp2an |
⊢ ( tan ‘ ( π / 4 ) ) = ( ( sin ‘ ( π / 4 ) ) / ( cos ‘ ( π / 4 ) ) ) |
| 24 |
6
|
simpli |
⊢ ( sin ‘ ( π / 4 ) ) = ( 1 / ( √ ‘ 2 ) ) |
| 25 |
24 7
|
oveq12i |
⊢ ( ( sin ‘ ( π / 4 ) ) / ( cos ‘ ( π / 4 ) ) ) = ( ( 1 / ( √ ‘ 2 ) ) / ( 1 / ( √ ‘ 2 ) ) ) |
| 26 |
9 18
|
reccli |
⊢ ( 1 / ( √ ‘ 2 ) ) ∈ ℂ |
| 27 |
26 20
|
dividi |
⊢ ( ( 1 / ( √ ‘ 2 ) ) / ( 1 / ( √ ‘ 2 ) ) ) = 1 |
| 28 |
23 25 27
|
3eqtri |
⊢ ( tan ‘ ( π / 4 ) ) = 1 |