| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elioore | ⊢ ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  𝐴  <  0 )  →  𝐴  ∈  ℝ ) | 
						
							| 3 | 2 | renegcld | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  𝐴  <  0 )  →  - 𝐴  ∈  ℝ ) | 
						
							| 4 | 1 | lt0neg1d | ⊢ ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  →  ( 𝐴  <  0  ↔  0  <  - 𝐴 ) ) | 
						
							| 5 | 4 | biimpa | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  𝐴  <  0 )  →  0  <  - 𝐴 ) | 
						
							| 6 |  | eliooord | ⊢ ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  →  ( - ( π  /  2 )  <  𝐴  ∧  𝐴  <  ( π  /  2 ) ) ) | 
						
							| 7 | 6 | simpld | ⊢ ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  →  - ( π  /  2 )  <  𝐴 ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  𝐴  <  0 )  →  - ( π  /  2 )  <  𝐴 ) | 
						
							| 9 |  | halfpire | ⊢ ( π  /  2 )  ∈  ℝ | 
						
							| 10 |  | ltnegcon1 | ⊢ ( ( ( π  /  2 )  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( - ( π  /  2 )  <  𝐴  ↔  - 𝐴  <  ( π  /  2 ) ) ) | 
						
							| 11 | 9 2 10 | sylancr | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  𝐴  <  0 )  →  ( - ( π  /  2 )  <  𝐴  ↔  - 𝐴  <  ( π  /  2 ) ) ) | 
						
							| 12 | 8 11 | mpbid | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  𝐴  <  0 )  →  - 𝐴  <  ( π  /  2 ) ) | 
						
							| 13 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 14 | 9 | rexri | ⊢ ( π  /  2 )  ∈  ℝ* | 
						
							| 15 |  | elioo2 | ⊢ ( ( 0  ∈  ℝ*  ∧  ( π  /  2 )  ∈  ℝ* )  →  ( - 𝐴  ∈  ( 0 (,) ( π  /  2 ) )  ↔  ( - 𝐴  ∈  ℝ  ∧  0  <  - 𝐴  ∧  - 𝐴  <  ( π  /  2 ) ) ) ) | 
						
							| 16 | 13 14 15 | mp2an | ⊢ ( - 𝐴  ∈  ( 0 (,) ( π  /  2 ) )  ↔  ( - 𝐴  ∈  ℝ  ∧  0  <  - 𝐴  ∧  - 𝐴  <  ( π  /  2 ) ) ) | 
						
							| 17 | 3 5 12 16 | syl3anbrc | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  𝐴  <  0 )  →  - 𝐴  ∈  ( 0 (,) ( π  /  2 ) ) ) | 
						
							| 18 |  | sincosq1sgn | ⊢ ( - 𝐴  ∈  ( 0 (,) ( π  /  2 ) )  →  ( 0  <  ( sin ‘ - 𝐴 )  ∧  0  <  ( cos ‘ - 𝐴 ) ) ) | 
						
							| 19 | 17 18 | syl | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  𝐴  <  0 )  →  ( 0  <  ( sin ‘ - 𝐴 )  ∧  0  <  ( cos ‘ - 𝐴 ) ) ) | 
						
							| 20 | 19 | simprd | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  𝐴  <  0 )  →  0  <  ( cos ‘ - 𝐴 ) ) | 
						
							| 21 | 20 | gt0ne0d | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  𝐴  <  0 )  →  ( cos ‘ - 𝐴 )  ≠  0 ) | 
						
							| 22 | 3 21 | retancld | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  𝐴  <  0 )  →  ( tan ‘ - 𝐴 )  ∈  ℝ ) | 
						
							| 23 |  | tangtx | ⊢ ( - 𝐴  ∈  ( 0 (,) ( π  /  2 ) )  →  - 𝐴  <  ( tan ‘ - 𝐴 ) ) | 
						
							| 24 | 17 23 | syl | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  𝐴  <  0 )  →  - 𝐴  <  ( tan ‘ - 𝐴 ) ) | 
						
							| 25 | 3 22 24 | ltled | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  𝐴  <  0 )  →  - 𝐴  ≤  ( tan ‘ - 𝐴 ) ) | 
						
							| 26 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 27 |  | ltle | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ∈  ℝ )  →  ( 𝐴  <  0  →  𝐴  ≤  0 ) ) | 
						
							| 28 | 1 26 27 | sylancl | ⊢ ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  →  ( 𝐴  <  0  →  𝐴  ≤  0 ) ) | 
						
							| 29 | 28 | imp | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  𝐴  <  0 )  →  𝐴  ≤  0 ) | 
						
							| 30 | 2 29 | absnidd | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  𝐴  <  0 )  →  ( abs ‘ 𝐴 )  =  - 𝐴 ) | 
						
							| 31 | 1 | recnd | ⊢ ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  𝐴  <  0 )  →  𝐴  ∈  ℂ ) | 
						
							| 33 | 32 | negnegd | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  𝐴  <  0 )  →  - - 𝐴  =  𝐴 ) | 
						
							| 34 | 33 | fveq2d | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  𝐴  <  0 )  →  ( tan ‘ - - 𝐴 )  =  ( tan ‘ 𝐴 ) ) | 
						
							| 35 | 32 | negcld | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  𝐴  <  0 )  →  - 𝐴  ∈  ℂ ) | 
						
							| 36 |  | tanneg | ⊢ ( ( - 𝐴  ∈  ℂ  ∧  ( cos ‘ - 𝐴 )  ≠  0 )  →  ( tan ‘ - - 𝐴 )  =  - ( tan ‘ - 𝐴 ) ) | 
						
							| 37 | 35 21 36 | syl2anc | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  𝐴  <  0 )  →  ( tan ‘ - - 𝐴 )  =  - ( tan ‘ - 𝐴 ) ) | 
						
							| 38 | 34 37 | eqtr3d | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  𝐴  <  0 )  →  ( tan ‘ 𝐴 )  =  - ( tan ‘ - 𝐴 ) ) | 
						
							| 39 | 38 | fveq2d | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  𝐴  <  0 )  →  ( abs ‘ ( tan ‘ 𝐴 ) )  =  ( abs ‘ - ( tan ‘ - 𝐴 ) ) ) | 
						
							| 40 | 22 | recnd | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  𝐴  <  0 )  →  ( tan ‘ - 𝐴 )  ∈  ℂ ) | 
						
							| 41 | 40 | absnegd | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  𝐴  <  0 )  →  ( abs ‘ - ( tan ‘ - 𝐴 ) )  =  ( abs ‘ ( tan ‘ - 𝐴 ) ) ) | 
						
							| 42 |  | 0red | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  𝐴  <  0 )  →  0  ∈  ℝ ) | 
						
							| 43 |  | ltle | ⊢ ( ( 0  ∈  ℝ  ∧  - 𝐴  ∈  ℝ )  →  ( 0  <  - 𝐴  →  0  ≤  - 𝐴 ) ) | 
						
							| 44 | 26 3 43 | sylancr | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  𝐴  <  0 )  →  ( 0  <  - 𝐴  →  0  ≤  - 𝐴 ) ) | 
						
							| 45 | 5 44 | mpd | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  𝐴  <  0 )  →  0  ≤  - 𝐴 ) | 
						
							| 46 | 42 3 22 45 25 | letrd | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  𝐴  <  0 )  →  0  ≤  ( tan ‘ - 𝐴 ) ) | 
						
							| 47 | 22 46 | absidd | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  𝐴  <  0 )  →  ( abs ‘ ( tan ‘ - 𝐴 ) )  =  ( tan ‘ - 𝐴 ) ) | 
						
							| 48 | 39 41 47 | 3eqtrd | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  𝐴  <  0 )  →  ( abs ‘ ( tan ‘ 𝐴 ) )  =  ( tan ‘ - 𝐴 ) ) | 
						
							| 49 | 25 30 48 | 3brtr4d | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  𝐴  <  0 )  →  ( abs ‘ 𝐴 )  ≤  ( abs ‘ ( tan ‘ 𝐴 ) ) ) | 
						
							| 50 |  | abs0 | ⊢ ( abs ‘ 0 )  =  0 | 
						
							| 51 | 50 26 | eqeltri | ⊢ ( abs ‘ 0 )  ∈  ℝ | 
						
							| 52 | 51 | leidi | ⊢ ( abs ‘ 0 )  ≤  ( abs ‘ 0 ) | 
						
							| 53 | 52 | a1i | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  𝐴  =  0 )  →  ( abs ‘ 0 )  ≤  ( abs ‘ 0 ) ) | 
						
							| 54 |  | simpr | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  𝐴  =  0 )  →  𝐴  =  0 ) | 
						
							| 55 | 54 | fveq2d | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  𝐴  =  0 )  →  ( abs ‘ 𝐴 )  =  ( abs ‘ 0 ) ) | 
						
							| 56 | 54 | fveq2d | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  𝐴  =  0 )  →  ( tan ‘ 𝐴 )  =  ( tan ‘ 0 ) ) | 
						
							| 57 |  | tan0 | ⊢ ( tan ‘ 0 )  =  0 | 
						
							| 58 | 56 57 | eqtrdi | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  𝐴  =  0 )  →  ( tan ‘ 𝐴 )  =  0 ) | 
						
							| 59 | 58 | fveq2d | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  𝐴  =  0 )  →  ( abs ‘ ( tan ‘ 𝐴 ) )  =  ( abs ‘ 0 ) ) | 
						
							| 60 | 53 55 59 | 3brtr4d | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  𝐴  =  0 )  →  ( abs ‘ 𝐴 )  ≤  ( abs ‘ ( tan ‘ 𝐴 ) ) ) | 
						
							| 61 | 1 | adantr | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  0  <  𝐴 )  →  𝐴  ∈  ℝ ) | 
						
							| 62 |  | simpr | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  0  <  𝐴 )  →  0  <  𝐴 ) | 
						
							| 63 | 6 | simprd | ⊢ ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  →  𝐴  <  ( π  /  2 ) ) | 
						
							| 64 | 63 | adantr | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  0  <  𝐴 )  →  𝐴  <  ( π  /  2 ) ) | 
						
							| 65 |  | elioo2 | ⊢ ( ( 0  ∈  ℝ*  ∧  ( π  /  2 )  ∈  ℝ* )  →  ( 𝐴  ∈  ( 0 (,) ( π  /  2 ) )  ↔  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴  ∧  𝐴  <  ( π  /  2 ) ) ) ) | 
						
							| 66 | 13 14 65 | mp2an | ⊢ ( 𝐴  ∈  ( 0 (,) ( π  /  2 ) )  ↔  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴  ∧  𝐴  <  ( π  /  2 ) ) ) | 
						
							| 67 | 61 62 64 66 | syl3anbrc | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  0  <  𝐴 )  →  𝐴  ∈  ( 0 (,) ( π  /  2 ) ) ) | 
						
							| 68 |  | sincosq1sgn | ⊢ ( 𝐴  ∈  ( 0 (,) ( π  /  2 ) )  →  ( 0  <  ( sin ‘ 𝐴 )  ∧  0  <  ( cos ‘ 𝐴 ) ) ) | 
						
							| 69 | 67 68 | syl | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  0  <  𝐴 )  →  ( 0  <  ( sin ‘ 𝐴 )  ∧  0  <  ( cos ‘ 𝐴 ) ) ) | 
						
							| 70 | 69 | simprd | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  0  <  𝐴 )  →  0  <  ( cos ‘ 𝐴 ) ) | 
						
							| 71 | 70 | gt0ne0d | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  0  <  𝐴 )  →  ( cos ‘ 𝐴 )  ≠  0 ) | 
						
							| 72 | 61 71 | retancld | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  0  <  𝐴 )  →  ( tan ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 73 |  | tangtx | ⊢ ( 𝐴  ∈  ( 0 (,) ( π  /  2 ) )  →  𝐴  <  ( tan ‘ 𝐴 ) ) | 
						
							| 74 | 67 73 | syl | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  0  <  𝐴 )  →  𝐴  <  ( tan ‘ 𝐴 ) ) | 
						
							| 75 | 61 72 74 | ltled | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  0  <  𝐴 )  →  𝐴  ≤  ( tan ‘ 𝐴 ) ) | 
						
							| 76 |  | ltle | ⊢ ( ( 0  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( 0  <  𝐴  →  0  ≤  𝐴 ) ) | 
						
							| 77 | 26 1 76 | sylancr | ⊢ ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  →  ( 0  <  𝐴  →  0  ≤  𝐴 ) ) | 
						
							| 78 | 77 | imp | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  0  <  𝐴 )  →  0  ≤  𝐴 ) | 
						
							| 79 | 61 78 | absidd | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  0  <  𝐴 )  →  ( abs ‘ 𝐴 )  =  𝐴 ) | 
						
							| 80 |  | 0red | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  0  <  𝐴 )  →  0  ∈  ℝ ) | 
						
							| 81 | 80 61 72 78 75 | letrd | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  0  <  𝐴 )  →  0  ≤  ( tan ‘ 𝐴 ) ) | 
						
							| 82 | 72 81 | absidd | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  0  <  𝐴 )  →  ( abs ‘ ( tan ‘ 𝐴 ) )  =  ( tan ‘ 𝐴 ) ) | 
						
							| 83 | 75 79 82 | 3brtr4d | ⊢ ( ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  0  <  𝐴 )  →  ( abs ‘ 𝐴 )  ≤  ( abs ‘ ( tan ‘ 𝐴 ) ) ) | 
						
							| 84 |  | lttri4 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ∈  ℝ )  →  ( 𝐴  <  0  ∨  𝐴  =  0  ∨  0  <  𝐴 ) ) | 
						
							| 85 | 1 26 84 | sylancl | ⊢ ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  →  ( 𝐴  <  0  ∨  𝐴  =  0  ∨  0  <  𝐴 ) ) | 
						
							| 86 | 49 60 83 85 | mpjao3dan | ⊢ ( 𝐴  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  →  ( abs ‘ 𝐴 )  ≤  ( abs ‘ ( tan ‘ 𝐴 ) ) ) |