| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 | ⊢ ( 𝐴  =  0  →  ( ℜ ‘ 𝐴 )  =  ( ℜ ‘ 0 ) ) | 
						
							| 2 |  | re0 | ⊢ ( ℜ ‘ 0 )  =  0 | 
						
							| 3 | 1 2 | eqtrdi | ⊢ ( 𝐴  =  0  →  ( ℜ ‘ 𝐴 )  =  0 ) | 
						
							| 4 | 3 | necon3i | ⊢ ( ( ℜ ‘ 𝐴 )  ≠  0  →  𝐴  ≠  0 ) | 
						
							| 5 |  | logcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( log ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 6 | 4 5 | sylan2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( log ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 7 | 6 | imcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 8 | 7 | recnd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 9 |  | sqcl | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴 ↑ 2 )  ∈  ℂ ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( 𝐴 ↑ 2 )  ∈  ℂ ) | 
						
							| 11 |  | abscl | ⊢ ( 𝐴  ∈  ℂ  →  ( abs ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( abs ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 13 | 12 | recnd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( abs ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 14 | 13 | sqcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( abs ‘ 𝐴 ) ↑ 2 )  ∈  ℂ ) | 
						
							| 15 |  | absrpcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( abs ‘ 𝐴 )  ∈  ℝ+ ) | 
						
							| 16 | 4 15 | sylan2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( abs ‘ 𝐴 )  ∈  ℝ+ ) | 
						
							| 17 | 16 | rpne0d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( abs ‘ 𝐴 )  ≠  0 ) | 
						
							| 18 |  | sqne0 | ⊢ ( ( abs ‘ 𝐴 )  ∈  ℂ  →  ( ( ( abs ‘ 𝐴 ) ↑ 2 )  ≠  0  ↔  ( abs ‘ 𝐴 )  ≠  0 ) ) | 
						
							| 19 | 13 18 | syl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( ( abs ‘ 𝐴 ) ↑ 2 )  ≠  0  ↔  ( abs ‘ 𝐴 )  ≠  0 ) ) | 
						
							| 20 | 17 19 | mpbird | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( abs ‘ 𝐴 ) ↑ 2 )  ≠  0 ) | 
						
							| 21 | 10 14 14 20 | divdird | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( ( 𝐴 ↑ 2 )  +  ( ( abs ‘ 𝐴 ) ↑ 2 ) )  /  ( ( abs ‘ 𝐴 ) ↑ 2 ) )  =  ( ( ( 𝐴 ↑ 2 )  /  ( ( abs ‘ 𝐴 ) ↑ 2 ) )  +  ( ( ( abs ‘ 𝐴 ) ↑ 2 )  /  ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) ) | 
						
							| 22 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 23 |  | mulcl | ⊢ ( ( i  ∈  ℂ  ∧  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ℂ )  →  ( i  ·  ( ℑ ‘ ( log ‘ 𝐴 ) ) )  ∈  ℂ ) | 
						
							| 24 | 22 8 23 | sylancr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( i  ·  ( ℑ ‘ ( log ‘ 𝐴 ) ) )  ∈  ℂ ) | 
						
							| 25 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 26 |  | efexp | ⊢ ( ( ( i  ·  ( ℑ ‘ ( log ‘ 𝐴 ) ) )  ∈  ℂ  ∧  2  ∈  ℤ )  →  ( exp ‘ ( 2  ·  ( i  ·  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) )  =  ( ( exp ‘ ( i  ·  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ↑ 2 ) ) | 
						
							| 27 | 24 25 26 | sylancl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( exp ‘ ( 2  ·  ( i  ·  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) )  =  ( ( exp ‘ ( i  ·  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ↑ 2 ) ) | 
						
							| 28 |  | efiarg | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( exp ‘ ( i  ·  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) )  =  ( 𝐴  /  ( abs ‘ 𝐴 ) ) ) | 
						
							| 29 | 4 28 | sylan2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( exp ‘ ( i  ·  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) )  =  ( 𝐴  /  ( abs ‘ 𝐴 ) ) ) | 
						
							| 30 | 29 | oveq1d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( exp ‘ ( i  ·  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ↑ 2 )  =  ( ( 𝐴  /  ( abs ‘ 𝐴 ) ) ↑ 2 ) ) | 
						
							| 31 |  | simpl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  𝐴  ∈  ℂ ) | 
						
							| 32 | 31 13 17 | sqdivd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( 𝐴  /  ( abs ‘ 𝐴 ) ) ↑ 2 )  =  ( ( 𝐴 ↑ 2 )  /  ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 33 | 27 30 32 | 3eqtrrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( 𝐴 ↑ 2 )  /  ( ( abs ‘ 𝐴 ) ↑ 2 ) )  =  ( exp ‘ ( 2  ·  ( i  ·  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 34 | 14 20 | dividd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( ( abs ‘ 𝐴 ) ↑ 2 )  /  ( ( abs ‘ 𝐴 ) ↑ 2 ) )  =  1 ) | 
						
							| 35 | 33 34 | oveq12d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( ( 𝐴 ↑ 2 )  /  ( ( abs ‘ 𝐴 ) ↑ 2 ) )  +  ( ( ( abs ‘ 𝐴 ) ↑ 2 )  /  ( ( abs ‘ 𝐴 ) ↑ 2 ) ) )  =  ( ( exp ‘ ( 2  ·  ( i  ·  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) )  +  1 ) ) | 
						
							| 36 | 21 35 | eqtr2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( exp ‘ ( 2  ·  ( i  ·  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) )  +  1 )  =  ( ( ( 𝐴 ↑ 2 )  +  ( ( abs ‘ 𝐴 ) ↑ 2 ) )  /  ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 37 | 10 14 | addcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( 𝐴 ↑ 2 )  +  ( ( abs ‘ 𝐴 ) ↑ 2 ) )  ∈  ℂ ) | 
						
							| 38 | 22 | a1i | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  i  ∈  ℂ ) | 
						
							| 39 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 40 |  | recl | ⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 41 | 40 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ℜ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 42 | 41 | recnd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ℜ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 43 | 42 | sqcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( ℜ ‘ 𝐴 ) ↑ 2 )  ∈  ℂ ) | 
						
							| 44 |  | mulcl | ⊢ ( ( 2  ∈  ℂ  ∧  ( ( ℜ ‘ 𝐴 ) ↑ 2 )  ∈  ℂ )  →  ( 2  ·  ( ( ℜ ‘ 𝐴 ) ↑ 2 ) )  ∈  ℂ ) | 
						
							| 45 | 39 43 44 | sylancr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( 2  ·  ( ( ℜ ‘ 𝐴 ) ↑ 2 ) )  ∈  ℂ ) | 
						
							| 46 | 39 | a1i | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  2  ∈  ℂ ) | 
						
							| 47 |  | imcl | ⊢ ( 𝐴  ∈  ℂ  →  ( ℑ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 48 | 47 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ℑ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 49 | 48 | recnd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ℑ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 50 | 42 49 | mulcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( ℜ ‘ 𝐴 )  ·  ( ℑ ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 51 | 38 46 50 | mul12d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( i  ·  ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( ℑ ‘ 𝐴 ) ) ) )  =  ( 2  ·  ( i  ·  ( ( ℜ ‘ 𝐴 )  ·  ( ℑ ‘ 𝐴 ) ) ) ) ) | 
						
							| 52 | 38 42 49 | mul12d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( i  ·  ( ( ℜ ‘ 𝐴 )  ·  ( ℑ ‘ 𝐴 ) ) )  =  ( ( ℜ ‘ 𝐴 )  ·  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) ) | 
						
							| 53 | 52 | oveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( 2  ·  ( i  ·  ( ( ℜ ‘ 𝐴 )  ·  ( ℑ ‘ 𝐴 ) ) ) )  =  ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) ) ) | 
						
							| 54 | 51 53 | eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( i  ·  ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( ℑ ‘ 𝐴 ) ) ) )  =  ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) ) ) | 
						
							| 55 |  | mulcl | ⊢ ( ( i  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  ∈  ℂ )  →  ( i  ·  ( ℑ ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 56 | 22 49 55 | sylancr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( i  ·  ( ℑ ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 57 | 42 56 | mulcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( ℜ ‘ 𝐴 )  ·  ( i  ·  ( ℑ ‘ 𝐴 ) ) )  ∈  ℂ ) | 
						
							| 58 |  | mulcl | ⊢ ( ( 2  ∈  ℂ  ∧  ( ( ℜ ‘ 𝐴 )  ·  ( i  ·  ( ℑ ‘ 𝐴 ) ) )  ∈  ℂ )  →  ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) )  ∈  ℂ ) | 
						
							| 59 | 39 57 58 | sylancr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) )  ∈  ℂ ) | 
						
							| 60 | 54 59 | eqeltrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( i  ·  ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( ℑ ‘ 𝐴 ) ) ) )  ∈  ℂ ) | 
						
							| 61 | 38 45 60 | adddid | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( i  ·  ( ( 2  ·  ( ( ℜ ‘ 𝐴 ) ↑ 2 ) )  +  ( i  ·  ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( ℑ ‘ 𝐴 ) ) ) ) ) )  =  ( ( i  ·  ( 2  ·  ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) )  +  ( i  ·  ( i  ·  ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( ℑ ‘ 𝐴 ) ) ) ) ) ) ) | 
						
							| 62 |  | mulcl | ⊢ ( ( ( ℜ ‘ 𝐴 )  ∈  ℂ  ∧  i  ∈  ℂ )  →  ( ( ℜ ‘ 𝐴 )  ·  i )  ∈  ℂ ) | 
						
							| 63 | 42 22 62 | sylancl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( ℜ ‘ 𝐴 )  ·  i )  ∈  ℂ ) | 
						
							| 64 | 46 63 42 | mulassd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  i ) )  ·  ( ℜ ‘ 𝐴 ) )  =  ( 2  ·  ( ( ( ℜ ‘ 𝐴 )  ·  i )  ·  ( ℜ ‘ 𝐴 ) ) ) ) | 
						
							| 65 | 42 | sqvald | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( ℜ ‘ 𝐴 ) ↑ 2 )  =  ( ( ℜ ‘ 𝐴 )  ·  ( ℜ ‘ 𝐴 ) ) ) | 
						
							| 66 | 65 | oveq1d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( ( ℜ ‘ 𝐴 ) ↑ 2 )  ·  i )  =  ( ( ( ℜ ‘ 𝐴 )  ·  ( ℜ ‘ 𝐴 ) )  ·  i ) ) | 
						
							| 67 |  | mulcom | ⊢ ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 )  ∈  ℂ  ∧  i  ∈  ℂ )  →  ( ( ( ℜ ‘ 𝐴 ) ↑ 2 )  ·  i )  =  ( i  ·  ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 68 | 43 22 67 | sylancl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( ( ℜ ‘ 𝐴 ) ↑ 2 )  ·  i )  =  ( i  ·  ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 69 | 42 42 38 | mul32d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( ( ℜ ‘ 𝐴 )  ·  ( ℜ ‘ 𝐴 ) )  ·  i )  =  ( ( ( ℜ ‘ 𝐴 )  ·  i )  ·  ( ℜ ‘ 𝐴 ) ) ) | 
						
							| 70 | 66 68 69 | 3eqtr3d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( i  ·  ( ( ℜ ‘ 𝐴 ) ↑ 2 ) )  =  ( ( ( ℜ ‘ 𝐴 )  ·  i )  ·  ( ℜ ‘ 𝐴 ) ) ) | 
						
							| 71 | 70 | oveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( 2  ·  ( i  ·  ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) )  =  ( 2  ·  ( ( ( ℜ ‘ 𝐴 )  ·  i )  ·  ( ℜ ‘ 𝐴 ) ) ) ) | 
						
							| 72 | 46 38 43 | mul12d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( 2  ·  ( i  ·  ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) )  =  ( i  ·  ( 2  ·  ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) ) ) | 
						
							| 73 | 64 71 72 | 3eqtr2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  i ) )  ·  ( ℜ ‘ 𝐴 ) )  =  ( i  ·  ( 2  ·  ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) ) ) | 
						
							| 74 |  | ixi | ⊢ ( i  ·  i )  =  - 1 | 
						
							| 75 | 74 | oveq1i | ⊢ ( ( i  ·  i )  ·  ( ( 2  ·  ( ℑ ‘ 𝐴 ) )  ·  ( ℜ ‘ 𝐴 ) ) )  =  ( - 1  ·  ( ( 2  ·  ( ℑ ‘ 𝐴 ) )  ·  ( ℜ ‘ 𝐴 ) ) ) | 
						
							| 76 |  | mulcl | ⊢ ( ( 2  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  ∈  ℂ )  →  ( 2  ·  ( ℑ ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 77 | 39 49 76 | sylancr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( 2  ·  ( ℑ ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 78 | 77 42 | mulcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( 2  ·  ( ℑ ‘ 𝐴 ) )  ·  ( ℜ ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 79 | 38 38 78 | mulassd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( i  ·  i )  ·  ( ( 2  ·  ( ℑ ‘ 𝐴 ) )  ·  ( ℜ ‘ 𝐴 ) ) )  =  ( i  ·  ( i  ·  ( ( 2  ·  ( ℑ ‘ 𝐴 ) )  ·  ( ℜ ‘ 𝐴 ) ) ) ) ) | 
						
							| 80 | 75 79 | eqtr3id | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( - 1  ·  ( ( 2  ·  ( ℑ ‘ 𝐴 ) )  ·  ( ℜ ‘ 𝐴 ) ) )  =  ( i  ·  ( i  ·  ( ( 2  ·  ( ℑ ‘ 𝐴 ) )  ·  ( ℜ ‘ 𝐴 ) ) ) ) ) | 
						
							| 81 | 78 | mulm1d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( - 1  ·  ( ( 2  ·  ( ℑ ‘ 𝐴 ) )  ·  ( ℜ ‘ 𝐴 ) ) )  =  - ( ( 2  ·  ( ℑ ‘ 𝐴 ) )  ·  ( ℜ ‘ 𝐴 ) ) ) | 
						
							| 82 | 46 49 42 | mulassd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( 2  ·  ( ℑ ‘ 𝐴 ) )  ·  ( ℜ ‘ 𝐴 ) )  =  ( 2  ·  ( ( ℑ ‘ 𝐴 )  ·  ( ℜ ‘ 𝐴 ) ) ) ) | 
						
							| 83 | 49 42 | mulcomd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( ℑ ‘ 𝐴 )  ·  ( ℜ ‘ 𝐴 ) )  =  ( ( ℜ ‘ 𝐴 )  ·  ( ℑ ‘ 𝐴 ) ) ) | 
						
							| 84 | 83 | oveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( 2  ·  ( ( ℑ ‘ 𝐴 )  ·  ( ℜ ‘ 𝐴 ) ) )  =  ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( ℑ ‘ 𝐴 ) ) ) ) | 
						
							| 85 | 82 84 | eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( 2  ·  ( ℑ ‘ 𝐴 ) )  ·  ( ℜ ‘ 𝐴 ) )  =  ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( ℑ ‘ 𝐴 ) ) ) ) | 
						
							| 86 | 85 | oveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( i  ·  ( ( 2  ·  ( ℑ ‘ 𝐴 ) )  ·  ( ℜ ‘ 𝐴 ) ) )  =  ( i  ·  ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( ℑ ‘ 𝐴 ) ) ) ) ) | 
						
							| 87 | 86 | oveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( i  ·  ( i  ·  ( ( 2  ·  ( ℑ ‘ 𝐴 ) )  ·  ( ℜ ‘ 𝐴 ) ) ) )  =  ( i  ·  ( i  ·  ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( ℑ ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 88 | 80 81 87 | 3eqtr3d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  - ( ( 2  ·  ( ℑ ‘ 𝐴 ) )  ·  ( ℜ ‘ 𝐴 ) )  =  ( i  ·  ( i  ·  ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( ℑ ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 89 | 73 88 | oveq12d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  i ) )  ·  ( ℜ ‘ 𝐴 ) )  +  - ( ( 2  ·  ( ℑ ‘ 𝐴 ) )  ·  ( ℜ ‘ 𝐴 ) ) )  =  ( ( i  ·  ( 2  ·  ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) )  +  ( i  ·  ( i  ·  ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( ℑ ‘ 𝐴 ) ) ) ) ) ) ) | 
						
							| 90 |  | mulcl | ⊢ ( ( 2  ∈  ℂ  ∧  ( ( ℜ ‘ 𝐴 )  ·  i )  ∈  ℂ )  →  ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  i ) )  ∈  ℂ ) | 
						
							| 91 | 39 63 90 | sylancr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  i ) )  ∈  ℂ ) | 
						
							| 92 | 91 42 | mulcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  i ) )  ·  ( ℜ ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 93 | 92 78 | negsubd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  i ) )  ·  ( ℜ ‘ 𝐴 ) )  +  - ( ( 2  ·  ( ℑ ‘ 𝐴 ) )  ·  ( ℜ ‘ 𝐴 ) ) )  =  ( ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  i ) )  ·  ( ℜ ‘ 𝐴 ) )  −  ( ( 2  ·  ( ℑ ‘ 𝐴 ) )  ·  ( ℜ ‘ 𝐴 ) ) ) ) | 
						
							| 94 | 61 89 93 | 3eqtr2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( i  ·  ( ( 2  ·  ( ( ℜ ‘ 𝐴 ) ↑ 2 ) )  +  ( i  ·  ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( ℑ ‘ 𝐴 ) ) ) ) ) )  =  ( ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  i ) )  ·  ( ℜ ‘ 𝐴 ) )  −  ( ( 2  ·  ( ℑ ‘ 𝐴 ) )  ·  ( ℜ ‘ 𝐴 ) ) ) ) | 
						
							| 95 | 49 | sqcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( ℑ ‘ 𝐴 ) ↑ 2 )  ∈  ℂ ) | 
						
							| 96 | 59 95 | subcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) )  −  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) )  ∈  ℂ ) | 
						
							| 97 | 43 96 43 95 | add4d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 )  +  ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) )  −  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) )  +  ( ( ( ℜ ‘ 𝐴 ) ↑ 2 )  +  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) )  =  ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 )  +  ( ( ℜ ‘ 𝐴 ) ↑ 2 ) )  +  ( ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) )  −  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) )  +  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) ) | 
						
							| 98 |  | replim | ⊢ ( 𝐴  ∈  ℂ  →  𝐴  =  ( ( ℜ ‘ 𝐴 )  +  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) ) | 
						
							| 99 | 98 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  𝐴  =  ( ( ℜ ‘ 𝐴 )  +  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) ) | 
						
							| 100 | 99 | oveq1d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( 𝐴 ↑ 2 )  =  ( ( ( ℜ ‘ 𝐴 )  +  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) ↑ 2 ) ) | 
						
							| 101 |  | binom2 | ⊢ ( ( ( ℜ ‘ 𝐴 )  ∈  ℂ  ∧  ( i  ·  ( ℑ ‘ 𝐴 ) )  ∈  ℂ )  →  ( ( ( ℜ ‘ 𝐴 )  +  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) ↑ 2 )  =  ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 )  +  ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) ) )  +  ( ( i  ·  ( ℑ ‘ 𝐴 ) ) ↑ 2 ) ) ) | 
						
							| 102 | 42 56 101 | syl2anc | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( ( ℜ ‘ 𝐴 )  +  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) ↑ 2 )  =  ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 )  +  ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) ) )  +  ( ( i  ·  ( ℑ ‘ 𝐴 ) ) ↑ 2 ) ) ) | 
						
							| 103 |  | sqmul | ⊢ ( ( i  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  ∈  ℂ )  →  ( ( i  ·  ( ℑ ‘ 𝐴 ) ) ↑ 2 )  =  ( ( i ↑ 2 )  ·  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 104 | 22 49 103 | sylancr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( i  ·  ( ℑ ‘ 𝐴 ) ) ↑ 2 )  =  ( ( i ↑ 2 )  ·  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 105 |  | i2 | ⊢ ( i ↑ 2 )  =  - 1 | 
						
							| 106 | 105 | oveq1i | ⊢ ( ( i ↑ 2 )  ·  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) )  =  ( - 1  ·  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) | 
						
							| 107 | 104 106 | eqtrdi | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( i  ·  ( ℑ ‘ 𝐴 ) ) ↑ 2 )  =  ( - 1  ·  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 108 | 95 | mulm1d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( - 1  ·  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) )  =  - ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) | 
						
							| 109 | 107 108 | eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( i  ·  ( ℑ ‘ 𝐴 ) ) ↑ 2 )  =  - ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) | 
						
							| 110 | 109 | oveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 )  +  ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) ) )  +  ( ( i  ·  ( ℑ ‘ 𝐴 ) ) ↑ 2 ) )  =  ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 )  +  ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) ) )  +  - ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 111 | 43 59 | addcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( ( ℜ ‘ 𝐴 ) ↑ 2 )  +  ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) ) )  ∈  ℂ ) | 
						
							| 112 | 111 95 | negsubd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 )  +  ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) ) )  +  - ( ( ℑ ‘ 𝐴 ) ↑ 2 ) )  =  ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 )  +  ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) ) )  −  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 113 | 102 110 112 | 3eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( ( ℜ ‘ 𝐴 )  +  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) ↑ 2 )  =  ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 )  +  ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) ) )  −  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 114 | 43 59 95 | addsubassd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 )  +  ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) ) )  −  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) )  =  ( ( ( ℜ ‘ 𝐴 ) ↑ 2 )  +  ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) )  −  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) ) | 
						
							| 115 | 100 113 114 | 3eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( 𝐴 ↑ 2 )  =  ( ( ( ℜ ‘ 𝐴 ) ↑ 2 )  +  ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) )  −  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) ) | 
						
							| 116 |  | absvalsq2 | ⊢ ( 𝐴  ∈  ℂ  →  ( ( abs ‘ 𝐴 ) ↑ 2 )  =  ( ( ( ℜ ‘ 𝐴 ) ↑ 2 )  +  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 117 | 116 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( abs ‘ 𝐴 ) ↑ 2 )  =  ( ( ( ℜ ‘ 𝐴 ) ↑ 2 )  +  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 118 | 115 117 | oveq12d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( 𝐴 ↑ 2 )  +  ( ( abs ‘ 𝐴 ) ↑ 2 ) )  =  ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 )  +  ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) )  −  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) )  +  ( ( ( ℜ ‘ 𝐴 ) ↑ 2 )  +  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) ) | 
						
							| 119 | 43 | 2timesd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( 2  ·  ( ( ℜ ‘ 𝐴 ) ↑ 2 ) )  =  ( ( ( ℜ ‘ 𝐴 ) ↑ 2 )  +  ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 120 | 59 95 | npcand | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) )  −  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) )  +  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) )  =  ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) ) ) | 
						
							| 121 | 53 51 120 | 3eqtr4d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( i  ·  ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( ℑ ‘ 𝐴 ) ) ) )  =  ( ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) )  −  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) )  +  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 122 | 119 121 | oveq12d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( 2  ·  ( ( ℜ ‘ 𝐴 ) ↑ 2 ) )  +  ( i  ·  ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( ℑ ‘ 𝐴 ) ) ) ) )  =  ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 )  +  ( ( ℜ ‘ 𝐴 ) ↑ 2 ) )  +  ( ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) )  −  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) )  +  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) ) | 
						
							| 123 | 97 118 122 | 3eqtr4d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( 𝐴 ↑ 2 )  +  ( ( abs ‘ 𝐴 ) ↑ 2 ) )  =  ( ( 2  ·  ( ( ℜ ‘ 𝐴 ) ↑ 2 ) )  +  ( i  ·  ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( ℑ ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 124 | 123 | oveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( i  ·  ( ( 𝐴 ↑ 2 )  +  ( ( abs ‘ 𝐴 ) ↑ 2 ) ) )  =  ( i  ·  ( ( 2  ·  ( ( ℜ ‘ 𝐴 ) ↑ 2 ) )  +  ( i  ·  ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( ℑ ‘ 𝐴 ) ) ) ) ) ) ) | 
						
							| 125 | 91 77 42 | subdird | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  i ) )  −  ( 2  ·  ( ℑ ‘ 𝐴 ) ) )  ·  ( ℜ ‘ 𝐴 ) )  =  ( ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  i ) )  ·  ( ℜ ‘ 𝐴 ) )  −  ( ( 2  ·  ( ℑ ‘ 𝐴 ) )  ·  ( ℜ ‘ 𝐴 ) ) ) ) | 
						
							| 126 | 94 124 125 | 3eqtr4d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( i  ·  ( ( 𝐴 ↑ 2 )  +  ( ( abs ‘ 𝐴 ) ↑ 2 ) ) )  =  ( ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  i ) )  −  ( 2  ·  ( ℑ ‘ 𝐴 ) ) )  ·  ( ℜ ‘ 𝐴 ) ) ) | 
						
							| 127 | 91 77 | subcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  i ) )  −  ( 2  ·  ( ℑ ‘ 𝐴 ) ) )  ∈  ℂ ) | 
						
							| 128 |  | mulcom | ⊢ ( ( ( ℜ ‘ 𝐴 )  ∈  ℂ  ∧  i  ∈  ℂ )  →  ( ( ℜ ‘ 𝐴 )  ·  i )  =  ( i  ·  ( ℜ ‘ 𝐴 ) ) ) | 
						
							| 129 | 42 22 128 | sylancl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( ℜ ‘ 𝐴 )  ·  i )  =  ( i  ·  ( ℜ ‘ 𝐴 ) ) ) | 
						
							| 130 |  | simpr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ℜ ‘ 𝐴 )  ≠  0 ) | 
						
							| 131 |  | eleq1 | ⊢ ( ( i  ·  ( ℜ ‘ 𝐴 ) )  =  ( ℑ ‘ 𝐴 )  →  ( ( i  ·  ( ℜ ‘ 𝐴 ) )  ∈  ℝ  ↔  ( ℑ ‘ 𝐴 )  ∈  ℝ ) ) | 
						
							| 132 | 48 131 | syl5ibrcom | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( i  ·  ( ℜ ‘ 𝐴 ) )  =  ( ℑ ‘ 𝐴 )  →  ( i  ·  ( ℜ ‘ 𝐴 ) )  ∈  ℝ ) ) | 
						
							| 133 |  | rimul | ⊢ ( ( ( ℜ ‘ 𝐴 )  ∈  ℝ  ∧  ( i  ·  ( ℜ ‘ 𝐴 ) )  ∈  ℝ )  →  ( ℜ ‘ 𝐴 )  =  0 ) | 
						
							| 134 | 41 132 133 | syl6an | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( i  ·  ( ℜ ‘ 𝐴 ) )  =  ( ℑ ‘ 𝐴 )  →  ( ℜ ‘ 𝐴 )  =  0 ) ) | 
						
							| 135 | 134 | necon3d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( ℜ ‘ 𝐴 )  ≠  0  →  ( i  ·  ( ℜ ‘ 𝐴 ) )  ≠  ( ℑ ‘ 𝐴 ) ) ) | 
						
							| 136 | 130 135 | mpd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( i  ·  ( ℜ ‘ 𝐴 ) )  ≠  ( ℑ ‘ 𝐴 ) ) | 
						
							| 137 | 129 136 | eqnetrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( ℜ ‘ 𝐴 )  ·  i )  ≠  ( ℑ ‘ 𝐴 ) ) | 
						
							| 138 | 91 77 | subeq0ad | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  i ) )  −  ( 2  ·  ( ℑ ‘ 𝐴 ) ) )  =  0  ↔  ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  i ) )  =  ( 2  ·  ( ℑ ‘ 𝐴 ) ) ) ) | 
						
							| 139 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 140 | 139 | a1i | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  2  ≠  0 ) | 
						
							| 141 | 63 49 46 140 | mulcand | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  i ) )  =  ( 2  ·  ( ℑ ‘ 𝐴 ) )  ↔  ( ( ℜ ‘ 𝐴 )  ·  i )  =  ( ℑ ‘ 𝐴 ) ) ) | 
						
							| 142 | 138 141 | bitrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  i ) )  −  ( 2  ·  ( ℑ ‘ 𝐴 ) ) )  =  0  ↔  ( ( ℜ ‘ 𝐴 )  ·  i )  =  ( ℑ ‘ 𝐴 ) ) ) | 
						
							| 143 | 142 | necon3bid | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  i ) )  −  ( 2  ·  ( ℑ ‘ 𝐴 ) ) )  ≠  0  ↔  ( ( ℜ ‘ 𝐴 )  ·  i )  ≠  ( ℑ ‘ 𝐴 ) ) ) | 
						
							| 144 | 137 143 | mpbird | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  i ) )  −  ( 2  ·  ( ℑ ‘ 𝐴 ) ) )  ≠  0 ) | 
						
							| 145 | 127 42 144 130 | mulne0d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  i ) )  −  ( 2  ·  ( ℑ ‘ 𝐴 ) ) )  ·  ( ℜ ‘ 𝐴 ) )  ≠  0 ) | 
						
							| 146 | 126 145 | eqnetrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( i  ·  ( ( 𝐴 ↑ 2 )  +  ( ( abs ‘ 𝐴 ) ↑ 2 ) ) )  ≠  0 ) | 
						
							| 147 |  | oveq2 | ⊢ ( ( ( 𝐴 ↑ 2 )  +  ( ( abs ‘ 𝐴 ) ↑ 2 ) )  =  0  →  ( i  ·  ( ( 𝐴 ↑ 2 )  +  ( ( abs ‘ 𝐴 ) ↑ 2 ) ) )  =  ( i  ·  0 ) ) | 
						
							| 148 |  | it0e0 | ⊢ ( i  ·  0 )  =  0 | 
						
							| 149 | 147 148 | eqtrdi | ⊢ ( ( ( 𝐴 ↑ 2 )  +  ( ( abs ‘ 𝐴 ) ↑ 2 ) )  =  0  →  ( i  ·  ( ( 𝐴 ↑ 2 )  +  ( ( abs ‘ 𝐴 ) ↑ 2 ) ) )  =  0 ) | 
						
							| 150 | 149 | necon3i | ⊢ ( ( i  ·  ( ( 𝐴 ↑ 2 )  +  ( ( abs ‘ 𝐴 ) ↑ 2 ) ) )  ≠  0  →  ( ( 𝐴 ↑ 2 )  +  ( ( abs ‘ 𝐴 ) ↑ 2 ) )  ≠  0 ) | 
						
							| 151 | 146 150 | syl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( 𝐴 ↑ 2 )  +  ( ( abs ‘ 𝐴 ) ↑ 2 ) )  ≠  0 ) | 
						
							| 152 | 37 14 151 20 | divne0d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( ( 𝐴 ↑ 2 )  +  ( ( abs ‘ 𝐴 ) ↑ 2 ) )  /  ( ( abs ‘ 𝐴 ) ↑ 2 ) )  ≠  0 ) | 
						
							| 153 | 36 152 | eqnetrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( exp ‘ ( 2  ·  ( i  ·  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) )  +  1 )  ≠  0 ) | 
						
							| 154 |  | tanval3 | ⊢ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ℂ  ∧  ( ( exp ‘ ( 2  ·  ( i  ·  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) )  +  1 )  ≠  0 )  →  ( tan ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) )  =  ( ( ( exp ‘ ( 2  ·  ( i  ·  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) )  −  1 )  /  ( i  ·  ( ( exp ‘ ( 2  ·  ( i  ·  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) )  +  1 ) ) ) ) | 
						
							| 155 | 8 153 154 | syl2anc | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( tan ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) )  =  ( ( ( exp ‘ ( 2  ·  ( i  ·  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) )  −  1 )  /  ( i  ·  ( ( exp ‘ ( 2  ·  ( i  ·  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) )  +  1 ) ) ) ) | 
						
							| 156 | 10 14 14 20 | divsubdird | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( ( 𝐴 ↑ 2 )  −  ( ( abs ‘ 𝐴 ) ↑ 2 ) )  /  ( ( abs ‘ 𝐴 ) ↑ 2 ) )  =  ( ( ( 𝐴 ↑ 2 )  /  ( ( abs ‘ 𝐴 ) ↑ 2 ) )  −  ( ( ( abs ‘ 𝐴 ) ↑ 2 )  /  ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) ) | 
						
							| 157 | 33 34 | oveq12d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( ( 𝐴 ↑ 2 )  /  ( ( abs ‘ 𝐴 ) ↑ 2 ) )  −  ( ( ( abs ‘ 𝐴 ) ↑ 2 )  /  ( ( abs ‘ 𝐴 ) ↑ 2 ) ) )  =  ( ( exp ‘ ( 2  ·  ( i  ·  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) )  −  1 ) ) | 
						
							| 158 | 156 157 | eqtr2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( exp ‘ ( 2  ·  ( i  ·  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) )  −  1 )  =  ( ( ( 𝐴 ↑ 2 )  −  ( ( abs ‘ 𝐴 ) ↑ 2 ) )  /  ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 159 | 36 | oveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( i  ·  ( ( exp ‘ ( 2  ·  ( i  ·  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) )  +  1 ) )  =  ( i  ·  ( ( ( 𝐴 ↑ 2 )  +  ( ( abs ‘ 𝐴 ) ↑ 2 ) )  /  ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) ) | 
						
							| 160 | 38 37 14 20 | divassd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( i  ·  ( ( 𝐴 ↑ 2 )  +  ( ( abs ‘ 𝐴 ) ↑ 2 ) ) )  /  ( ( abs ‘ 𝐴 ) ↑ 2 ) )  =  ( i  ·  ( ( ( 𝐴 ↑ 2 )  +  ( ( abs ‘ 𝐴 ) ↑ 2 ) )  /  ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) ) | 
						
							| 161 | 159 160 | eqtr4d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( i  ·  ( ( exp ‘ ( 2  ·  ( i  ·  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) )  +  1 ) )  =  ( ( i  ·  ( ( 𝐴 ↑ 2 )  +  ( ( abs ‘ 𝐴 ) ↑ 2 ) ) )  /  ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 162 | 158 161 | oveq12d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( ( exp ‘ ( 2  ·  ( i  ·  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) )  −  1 )  /  ( i  ·  ( ( exp ‘ ( 2  ·  ( i  ·  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) )  +  1 ) ) )  =  ( ( ( ( 𝐴 ↑ 2 )  −  ( ( abs ‘ 𝐴 ) ↑ 2 ) )  /  ( ( abs ‘ 𝐴 ) ↑ 2 ) )  /  ( ( i  ·  ( ( 𝐴 ↑ 2 )  +  ( ( abs ‘ 𝐴 ) ↑ 2 ) ) )  /  ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) ) | 
						
							| 163 | 10 14 | subcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( 𝐴 ↑ 2 )  −  ( ( abs ‘ 𝐴 ) ↑ 2 ) )  ∈  ℂ ) | 
						
							| 164 |  | mulcl | ⊢ ( ( i  ∈  ℂ  ∧  ( ( 𝐴 ↑ 2 )  +  ( ( abs ‘ 𝐴 ) ↑ 2 ) )  ∈  ℂ )  →  ( i  ·  ( ( 𝐴 ↑ 2 )  +  ( ( abs ‘ 𝐴 ) ↑ 2 ) ) )  ∈  ℂ ) | 
						
							| 165 | 22 37 164 | sylancr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( i  ·  ( ( 𝐴 ↑ 2 )  +  ( ( abs ‘ 𝐴 ) ↑ 2 ) ) )  ∈  ℂ ) | 
						
							| 166 | 163 165 14 146 20 | divcan7d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( ( ( 𝐴 ↑ 2 )  −  ( ( abs ‘ 𝐴 ) ↑ 2 ) )  /  ( ( abs ‘ 𝐴 ) ↑ 2 ) )  /  ( ( i  ·  ( ( 𝐴 ↑ 2 )  +  ( ( abs ‘ 𝐴 ) ↑ 2 ) ) )  /  ( ( abs ‘ 𝐴 ) ↑ 2 ) ) )  =  ( ( ( 𝐴 ↑ 2 )  −  ( ( abs ‘ 𝐴 ) ↑ 2 ) )  /  ( i  ·  ( ( 𝐴 ↑ 2 )  +  ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) ) ) | 
						
							| 167 | 115 117 | oveq12d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( 𝐴 ↑ 2 )  −  ( ( abs ‘ 𝐴 ) ↑ 2 ) )  =  ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 )  +  ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) )  −  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) )  −  ( ( ( ℜ ‘ 𝐴 ) ↑ 2 )  +  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) ) | 
						
							| 168 | 43 96 95 | pnpcand | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 )  +  ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) )  −  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) )  −  ( ( ( ℜ ‘ 𝐴 ) ↑ 2 )  +  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) )  =  ( ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) )  −  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) )  −  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 169 | 59 95 95 | subsub4d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) )  −  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) )  −  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) )  =  ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) )  −  ( ( ( ℑ ‘ 𝐴 ) ↑ 2 )  +  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) ) | 
						
							| 170 | 95 | 2timesd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( 2  ·  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) )  =  ( ( ( ℑ ‘ 𝐴 ) ↑ 2 )  +  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 171 | 170 | oveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) )  −  ( 2  ·  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) )  =  ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) )  −  ( ( ( ℑ ‘ 𝐴 ) ↑ 2 )  +  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) ) | 
						
							| 172 | 46 63 49 | mulassd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  i ) )  ·  ( ℑ ‘ 𝐴 ) )  =  ( 2  ·  ( ( ( ℜ ‘ 𝐴 )  ·  i )  ·  ( ℑ ‘ 𝐴 ) ) ) ) | 
						
							| 173 | 42 38 49 | mulassd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( ( ℜ ‘ 𝐴 )  ·  i )  ·  ( ℑ ‘ 𝐴 ) )  =  ( ( ℜ ‘ 𝐴 )  ·  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) ) | 
						
							| 174 | 173 | oveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( 2  ·  ( ( ( ℜ ‘ 𝐴 )  ·  i )  ·  ( ℑ ‘ 𝐴 ) ) )  =  ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) ) ) | 
						
							| 175 | 172 174 | eqtr2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) )  =  ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  i ) )  ·  ( ℑ ‘ 𝐴 ) ) ) | 
						
							| 176 | 49 | sqvald | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( ℑ ‘ 𝐴 ) ↑ 2 )  =  ( ( ℑ ‘ 𝐴 )  ·  ( ℑ ‘ 𝐴 ) ) ) | 
						
							| 177 | 176 | oveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( 2  ·  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) )  =  ( 2  ·  ( ( ℑ ‘ 𝐴 )  ·  ( ℑ ‘ 𝐴 ) ) ) ) | 
						
							| 178 | 46 49 49 | mulassd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( 2  ·  ( ℑ ‘ 𝐴 ) )  ·  ( ℑ ‘ 𝐴 ) )  =  ( 2  ·  ( ( ℑ ‘ 𝐴 )  ·  ( ℑ ‘ 𝐴 ) ) ) ) | 
						
							| 179 | 177 178 | eqtr4d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( 2  ·  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) )  =  ( ( 2  ·  ( ℑ ‘ 𝐴 ) )  ·  ( ℑ ‘ 𝐴 ) ) ) | 
						
							| 180 | 175 179 | oveq12d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) )  −  ( 2  ·  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) )  =  ( ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  i ) )  ·  ( ℑ ‘ 𝐴 ) )  −  ( ( 2  ·  ( ℑ ‘ 𝐴 ) )  ·  ( ℑ ‘ 𝐴 ) ) ) ) | 
						
							| 181 | 91 77 49 | subdird | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  i ) )  −  ( 2  ·  ( ℑ ‘ 𝐴 ) ) )  ·  ( ℑ ‘ 𝐴 ) )  =  ( ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  i ) )  ·  ( ℑ ‘ 𝐴 ) )  −  ( ( 2  ·  ( ℑ ‘ 𝐴 ) )  ·  ( ℑ ‘ 𝐴 ) ) ) ) | 
						
							| 182 | 180 181 | eqtr4d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) )  −  ( 2  ·  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) )  =  ( ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  i ) )  −  ( 2  ·  ( ℑ ‘ 𝐴 ) ) )  ·  ( ℑ ‘ 𝐴 ) ) ) | 
						
							| 183 | 169 171 182 | 3eqtr2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) )  −  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) )  −  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) )  =  ( ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  i ) )  −  ( 2  ·  ( ℑ ‘ 𝐴 ) ) )  ·  ( ℑ ‘ 𝐴 ) ) ) | 
						
							| 184 | 167 168 183 | 3eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( 𝐴 ↑ 2 )  −  ( ( abs ‘ 𝐴 ) ↑ 2 ) )  =  ( ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  i ) )  −  ( 2  ·  ( ℑ ‘ 𝐴 ) ) )  ·  ( ℑ ‘ 𝐴 ) ) ) | 
						
							| 185 | 184 126 | oveq12d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( ( 𝐴 ↑ 2 )  −  ( ( abs ‘ 𝐴 ) ↑ 2 ) )  /  ( i  ·  ( ( 𝐴 ↑ 2 )  +  ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) )  =  ( ( ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  i ) )  −  ( 2  ·  ( ℑ ‘ 𝐴 ) ) )  ·  ( ℑ ‘ 𝐴 ) )  /  ( ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  i ) )  −  ( 2  ·  ( ℑ ‘ 𝐴 ) ) )  ·  ( ℜ ‘ 𝐴 ) ) ) ) | 
						
							| 186 | 49 42 127 130 144 | divcan5d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  i ) )  −  ( 2  ·  ( ℑ ‘ 𝐴 ) ) )  ·  ( ℑ ‘ 𝐴 ) )  /  ( ( ( 2  ·  ( ( ℜ ‘ 𝐴 )  ·  i ) )  −  ( 2  ·  ( ℑ ‘ 𝐴 ) ) )  ·  ( ℜ ‘ 𝐴 ) ) )  =  ( ( ℑ ‘ 𝐴 )  /  ( ℜ ‘ 𝐴 ) ) ) | 
						
							| 187 | 166 185 186 | 3eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( ( ( ( 𝐴 ↑ 2 )  −  ( ( abs ‘ 𝐴 ) ↑ 2 ) )  /  ( ( abs ‘ 𝐴 ) ↑ 2 ) )  /  ( ( i  ·  ( ( 𝐴 ↑ 2 )  +  ( ( abs ‘ 𝐴 ) ↑ 2 ) ) )  /  ( ( abs ‘ 𝐴 ) ↑ 2 ) ) )  =  ( ( ℑ ‘ 𝐴 )  /  ( ℜ ‘ 𝐴 ) ) ) | 
						
							| 188 | 155 162 187 | 3eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( tan ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) )  =  ( ( ℑ ‘ 𝐴 )  /  ( ℜ ‘ 𝐴 ) ) ) |