Step |
Hyp |
Ref |
Expression |
1 |
|
atancl |
⊢ ( 𝐴 ∈ dom arctan → ( arctan ‘ 𝐴 ) ∈ ℂ ) |
2 |
|
2efiatan |
⊢ ( 𝐴 ∈ dom arctan → ( exp ‘ ( 2 · ( i · ( arctan ‘ 𝐴 ) ) ) ) = ( ( ( 2 · i ) / ( 𝐴 + i ) ) − 1 ) ) |
3 |
2
|
oveq1d |
⊢ ( 𝐴 ∈ dom arctan → ( ( exp ‘ ( 2 · ( i · ( arctan ‘ 𝐴 ) ) ) ) + 1 ) = ( ( ( ( 2 · i ) / ( 𝐴 + i ) ) − 1 ) + 1 ) ) |
4 |
|
2mulicn |
⊢ ( 2 · i ) ∈ ℂ |
5 |
4
|
a1i |
⊢ ( 𝐴 ∈ dom arctan → ( 2 · i ) ∈ ℂ ) |
6 |
|
atandm |
⊢ ( 𝐴 ∈ dom arctan ↔ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ - i ∧ 𝐴 ≠ i ) ) |
7 |
6
|
simp1bi |
⊢ ( 𝐴 ∈ dom arctan → 𝐴 ∈ ℂ ) |
8 |
|
ax-icn |
⊢ i ∈ ℂ |
9 |
|
addcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ i ∈ ℂ ) → ( 𝐴 + i ) ∈ ℂ ) |
10 |
7 8 9
|
sylancl |
⊢ ( 𝐴 ∈ dom arctan → ( 𝐴 + i ) ∈ ℂ ) |
11 |
|
subneg |
⊢ ( ( 𝐴 ∈ ℂ ∧ i ∈ ℂ ) → ( 𝐴 − - i ) = ( 𝐴 + i ) ) |
12 |
7 8 11
|
sylancl |
⊢ ( 𝐴 ∈ dom arctan → ( 𝐴 − - i ) = ( 𝐴 + i ) ) |
13 |
6
|
simp2bi |
⊢ ( 𝐴 ∈ dom arctan → 𝐴 ≠ - i ) |
14 |
8
|
negcli |
⊢ - i ∈ ℂ |
15 |
|
subeq0 |
⊢ ( ( 𝐴 ∈ ℂ ∧ - i ∈ ℂ ) → ( ( 𝐴 − - i ) = 0 ↔ 𝐴 = - i ) ) |
16 |
15
|
necon3bid |
⊢ ( ( 𝐴 ∈ ℂ ∧ - i ∈ ℂ ) → ( ( 𝐴 − - i ) ≠ 0 ↔ 𝐴 ≠ - i ) ) |
17 |
7 14 16
|
sylancl |
⊢ ( 𝐴 ∈ dom arctan → ( ( 𝐴 − - i ) ≠ 0 ↔ 𝐴 ≠ - i ) ) |
18 |
13 17
|
mpbird |
⊢ ( 𝐴 ∈ dom arctan → ( 𝐴 − - i ) ≠ 0 ) |
19 |
12 18
|
eqnetrrd |
⊢ ( 𝐴 ∈ dom arctan → ( 𝐴 + i ) ≠ 0 ) |
20 |
5 10 19
|
divcld |
⊢ ( 𝐴 ∈ dom arctan → ( ( 2 · i ) / ( 𝐴 + i ) ) ∈ ℂ ) |
21 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
22 |
|
npcan |
⊢ ( ( ( ( 2 · i ) / ( 𝐴 + i ) ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( ( 2 · i ) / ( 𝐴 + i ) ) − 1 ) + 1 ) = ( ( 2 · i ) / ( 𝐴 + i ) ) ) |
23 |
20 21 22
|
sylancl |
⊢ ( 𝐴 ∈ dom arctan → ( ( ( ( 2 · i ) / ( 𝐴 + i ) ) − 1 ) + 1 ) = ( ( 2 · i ) / ( 𝐴 + i ) ) ) |
24 |
3 23
|
eqtrd |
⊢ ( 𝐴 ∈ dom arctan → ( ( exp ‘ ( 2 · ( i · ( arctan ‘ 𝐴 ) ) ) ) + 1 ) = ( ( 2 · i ) / ( 𝐴 + i ) ) ) |
25 |
|
2muline0 |
⊢ ( 2 · i ) ≠ 0 |
26 |
25
|
a1i |
⊢ ( 𝐴 ∈ dom arctan → ( 2 · i ) ≠ 0 ) |
27 |
5 10 26 19
|
divne0d |
⊢ ( 𝐴 ∈ dom arctan → ( ( 2 · i ) / ( 𝐴 + i ) ) ≠ 0 ) |
28 |
24 27
|
eqnetrd |
⊢ ( 𝐴 ∈ dom arctan → ( ( exp ‘ ( 2 · ( i · ( arctan ‘ 𝐴 ) ) ) ) + 1 ) ≠ 0 ) |
29 |
|
tanval3 |
⊢ ( ( ( arctan ‘ 𝐴 ) ∈ ℂ ∧ ( ( exp ‘ ( 2 · ( i · ( arctan ‘ 𝐴 ) ) ) ) + 1 ) ≠ 0 ) → ( tan ‘ ( arctan ‘ 𝐴 ) ) = ( ( ( exp ‘ ( 2 · ( i · ( arctan ‘ 𝐴 ) ) ) ) − 1 ) / ( i · ( ( exp ‘ ( 2 · ( i · ( arctan ‘ 𝐴 ) ) ) ) + 1 ) ) ) ) |
30 |
1 28 29
|
syl2anc |
⊢ ( 𝐴 ∈ dom arctan → ( tan ‘ ( arctan ‘ 𝐴 ) ) = ( ( ( exp ‘ ( 2 · ( i · ( arctan ‘ 𝐴 ) ) ) ) − 1 ) / ( i · ( ( exp ‘ ( 2 · ( i · ( arctan ‘ 𝐴 ) ) ) ) + 1 ) ) ) ) |
31 |
2
|
oveq1d |
⊢ ( 𝐴 ∈ dom arctan → ( ( exp ‘ ( 2 · ( i · ( arctan ‘ 𝐴 ) ) ) ) − 1 ) = ( ( ( ( 2 · i ) / ( 𝐴 + i ) ) − 1 ) − 1 ) ) |
32 |
21
|
a1i |
⊢ ( 𝐴 ∈ dom arctan → 1 ∈ ℂ ) |
33 |
20 32 32
|
subsub4d |
⊢ ( 𝐴 ∈ dom arctan → ( ( ( ( 2 · i ) / ( 𝐴 + i ) ) − 1 ) − 1 ) = ( ( ( 2 · i ) / ( 𝐴 + i ) ) − ( 1 + 1 ) ) ) |
34 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
35 |
34
|
oveq2i |
⊢ ( ( ( 2 · i ) / ( 𝐴 + i ) ) − 2 ) = ( ( ( 2 · i ) / ( 𝐴 + i ) ) − ( 1 + 1 ) ) |
36 |
33 35
|
eqtr4di |
⊢ ( 𝐴 ∈ dom arctan → ( ( ( ( 2 · i ) / ( 𝐴 + i ) ) − 1 ) − 1 ) = ( ( ( 2 · i ) / ( 𝐴 + i ) ) − 2 ) ) |
37 |
31 36
|
eqtrd |
⊢ ( 𝐴 ∈ dom arctan → ( ( exp ‘ ( 2 · ( i · ( arctan ‘ 𝐴 ) ) ) ) − 1 ) = ( ( ( 2 · i ) / ( 𝐴 + i ) ) − 2 ) ) |
38 |
|
2cn |
⊢ 2 ∈ ℂ |
39 |
|
mulcl |
⊢ ( ( 2 ∈ ℂ ∧ ( 𝐴 + i ) ∈ ℂ ) → ( 2 · ( 𝐴 + i ) ) ∈ ℂ ) |
40 |
38 10 39
|
sylancr |
⊢ ( 𝐴 ∈ dom arctan → ( 2 · ( 𝐴 + i ) ) ∈ ℂ ) |
41 |
5 40 10 19
|
divsubdird |
⊢ ( 𝐴 ∈ dom arctan → ( ( ( 2 · i ) − ( 2 · ( 𝐴 + i ) ) ) / ( 𝐴 + i ) ) = ( ( ( 2 · i ) / ( 𝐴 + i ) ) − ( ( 2 · ( 𝐴 + i ) ) / ( 𝐴 + i ) ) ) ) |
42 |
|
mulneg12 |
⊢ ( ( 2 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( - 2 · 𝐴 ) = ( 2 · - 𝐴 ) ) |
43 |
38 7 42
|
sylancr |
⊢ ( 𝐴 ∈ dom arctan → ( - 2 · 𝐴 ) = ( 2 · - 𝐴 ) ) |
44 |
|
negsub |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i + - 𝐴 ) = ( i − 𝐴 ) ) |
45 |
8 7 44
|
sylancr |
⊢ ( 𝐴 ∈ dom arctan → ( i + - 𝐴 ) = ( i − 𝐴 ) ) |
46 |
45
|
oveq1d |
⊢ ( 𝐴 ∈ dom arctan → ( ( i + - 𝐴 ) − i ) = ( ( i − 𝐴 ) − i ) ) |
47 |
7
|
negcld |
⊢ ( 𝐴 ∈ dom arctan → - 𝐴 ∈ ℂ ) |
48 |
|
pncan2 |
⊢ ( ( i ∈ ℂ ∧ - 𝐴 ∈ ℂ ) → ( ( i + - 𝐴 ) − i ) = - 𝐴 ) |
49 |
8 47 48
|
sylancr |
⊢ ( 𝐴 ∈ dom arctan → ( ( i + - 𝐴 ) − i ) = - 𝐴 ) |
50 |
8
|
a1i |
⊢ ( 𝐴 ∈ dom arctan → i ∈ ℂ ) |
51 |
50 7 50
|
subsub4d |
⊢ ( 𝐴 ∈ dom arctan → ( ( i − 𝐴 ) − i ) = ( i − ( 𝐴 + i ) ) ) |
52 |
46 49 51
|
3eqtr3rd |
⊢ ( 𝐴 ∈ dom arctan → ( i − ( 𝐴 + i ) ) = - 𝐴 ) |
53 |
52
|
oveq2d |
⊢ ( 𝐴 ∈ dom arctan → ( 2 · ( i − ( 𝐴 + i ) ) ) = ( 2 · - 𝐴 ) ) |
54 |
38
|
a1i |
⊢ ( 𝐴 ∈ dom arctan → 2 ∈ ℂ ) |
55 |
54 50 10
|
subdid |
⊢ ( 𝐴 ∈ dom arctan → ( 2 · ( i − ( 𝐴 + i ) ) ) = ( ( 2 · i ) − ( 2 · ( 𝐴 + i ) ) ) ) |
56 |
43 53 55
|
3eqtr2rd |
⊢ ( 𝐴 ∈ dom arctan → ( ( 2 · i ) − ( 2 · ( 𝐴 + i ) ) ) = ( - 2 · 𝐴 ) ) |
57 |
56
|
oveq1d |
⊢ ( 𝐴 ∈ dom arctan → ( ( ( 2 · i ) − ( 2 · ( 𝐴 + i ) ) ) / ( 𝐴 + i ) ) = ( ( - 2 · 𝐴 ) / ( 𝐴 + i ) ) ) |
58 |
54 10 19
|
divcan4d |
⊢ ( 𝐴 ∈ dom arctan → ( ( 2 · ( 𝐴 + i ) ) / ( 𝐴 + i ) ) = 2 ) |
59 |
58
|
oveq2d |
⊢ ( 𝐴 ∈ dom arctan → ( ( ( 2 · i ) / ( 𝐴 + i ) ) − ( ( 2 · ( 𝐴 + i ) ) / ( 𝐴 + i ) ) ) = ( ( ( 2 · i ) / ( 𝐴 + i ) ) − 2 ) ) |
60 |
41 57 59
|
3eqtr3d |
⊢ ( 𝐴 ∈ dom arctan → ( ( - 2 · 𝐴 ) / ( 𝐴 + i ) ) = ( ( ( 2 · i ) / ( 𝐴 + i ) ) − 2 ) ) |
61 |
37 60
|
eqtr4d |
⊢ ( 𝐴 ∈ dom arctan → ( ( exp ‘ ( 2 · ( i · ( arctan ‘ 𝐴 ) ) ) ) − 1 ) = ( ( - 2 · 𝐴 ) / ( 𝐴 + i ) ) ) |
62 |
24
|
oveq2d |
⊢ ( 𝐴 ∈ dom arctan → ( i · ( ( exp ‘ ( 2 · ( i · ( arctan ‘ 𝐴 ) ) ) ) + 1 ) ) = ( i · ( ( 2 · i ) / ( 𝐴 + i ) ) ) ) |
63 |
8 38 8
|
mul12i |
⊢ ( i · ( 2 · i ) ) = ( 2 · ( i · i ) ) |
64 |
|
ixi |
⊢ ( i · i ) = - 1 |
65 |
64
|
oveq2i |
⊢ ( 2 · ( i · i ) ) = ( 2 · - 1 ) |
66 |
21
|
negcli |
⊢ - 1 ∈ ℂ |
67 |
38
|
mulm1i |
⊢ ( - 1 · 2 ) = - 2 |
68 |
66 38 67
|
mulcomli |
⊢ ( 2 · - 1 ) = - 2 |
69 |
63 65 68
|
3eqtri |
⊢ ( i · ( 2 · i ) ) = - 2 |
70 |
69
|
oveq1i |
⊢ ( ( i · ( 2 · i ) ) / ( 𝐴 + i ) ) = ( - 2 / ( 𝐴 + i ) ) |
71 |
50 5 10 19
|
divassd |
⊢ ( 𝐴 ∈ dom arctan → ( ( i · ( 2 · i ) ) / ( 𝐴 + i ) ) = ( i · ( ( 2 · i ) / ( 𝐴 + i ) ) ) ) |
72 |
70 71
|
eqtr3id |
⊢ ( 𝐴 ∈ dom arctan → ( - 2 / ( 𝐴 + i ) ) = ( i · ( ( 2 · i ) / ( 𝐴 + i ) ) ) ) |
73 |
62 72
|
eqtr4d |
⊢ ( 𝐴 ∈ dom arctan → ( i · ( ( exp ‘ ( 2 · ( i · ( arctan ‘ 𝐴 ) ) ) ) + 1 ) ) = ( - 2 / ( 𝐴 + i ) ) ) |
74 |
61 73
|
oveq12d |
⊢ ( 𝐴 ∈ dom arctan → ( ( ( exp ‘ ( 2 · ( i · ( arctan ‘ 𝐴 ) ) ) ) − 1 ) / ( i · ( ( exp ‘ ( 2 · ( i · ( arctan ‘ 𝐴 ) ) ) ) + 1 ) ) ) = ( ( ( - 2 · 𝐴 ) / ( 𝐴 + i ) ) / ( - 2 / ( 𝐴 + i ) ) ) ) |
75 |
38
|
negcli |
⊢ - 2 ∈ ℂ |
76 |
|
mulcl |
⊢ ( ( - 2 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( - 2 · 𝐴 ) ∈ ℂ ) |
77 |
75 7 76
|
sylancr |
⊢ ( 𝐴 ∈ dom arctan → ( - 2 · 𝐴 ) ∈ ℂ ) |
78 |
75
|
a1i |
⊢ ( 𝐴 ∈ dom arctan → - 2 ∈ ℂ ) |
79 |
|
2ne0 |
⊢ 2 ≠ 0 |
80 |
38 79
|
negne0i |
⊢ - 2 ≠ 0 |
81 |
80
|
a1i |
⊢ ( 𝐴 ∈ dom arctan → - 2 ≠ 0 ) |
82 |
77 78 10 81 19
|
divcan7d |
⊢ ( 𝐴 ∈ dom arctan → ( ( ( - 2 · 𝐴 ) / ( 𝐴 + i ) ) / ( - 2 / ( 𝐴 + i ) ) ) = ( ( - 2 · 𝐴 ) / - 2 ) ) |
83 |
7 78 81
|
divcan3d |
⊢ ( 𝐴 ∈ dom arctan → ( ( - 2 · 𝐴 ) / - 2 ) = 𝐴 ) |
84 |
82 83
|
eqtrd |
⊢ ( 𝐴 ∈ dom arctan → ( ( ( - 2 · 𝐴 ) / ( 𝐴 + i ) ) / ( - 2 / ( 𝐴 + i ) ) ) = 𝐴 ) |
85 |
74 84
|
eqtrd |
⊢ ( 𝐴 ∈ dom arctan → ( ( ( exp ‘ ( 2 · ( i · ( arctan ‘ 𝐴 ) ) ) ) − 1 ) / ( i · ( ( exp ‘ ( 2 · ( i · ( arctan ‘ 𝐴 ) ) ) ) + 1 ) ) ) = 𝐴 ) |
86 |
30 85
|
eqtrd |
⊢ ( 𝐴 ∈ dom arctan → ( tan ‘ ( arctan ‘ 𝐴 ) ) = 𝐴 ) |