Metamath Proof Explorer


Theorem tancld

Description: Closure of the tangent function. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses sincld.1 ( 𝜑𝐴 ∈ ℂ )
tancld.2 ( 𝜑 → ( cos ‘ 𝐴 ) ≠ 0 )
Assertion tancld ( 𝜑 → ( tan ‘ 𝐴 ) ∈ ℂ )

Proof

Step Hyp Ref Expression
1 sincld.1 ( 𝜑𝐴 ∈ ℂ )
2 tancld.2 ( 𝜑 → ( cos ‘ 𝐴 ) ≠ 0 )
3 tancl ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ 𝐴 ) ∈ ℂ )
4 1 2 3 syl2anc ( 𝜑 → ( tan ‘ 𝐴 ) ∈ ℂ )