| Step |
Hyp |
Ref |
Expression |
| 1 |
|
retanhcl |
⊢ ( 𝐴 ∈ ℝ → ( ( tan ‘ ( i · 𝐴 ) ) / i ) ∈ ℝ ) |
| 2 |
|
ax-icn |
⊢ i ∈ ℂ |
| 3 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
| 4 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) |
| 5 |
2 3 4
|
sylancr |
⊢ ( 𝐴 ∈ ℝ → ( i · 𝐴 ) ∈ ℂ ) |
| 6 |
|
rpcoshcl |
⊢ ( 𝐴 ∈ ℝ → ( cos ‘ ( i · 𝐴 ) ) ∈ ℝ+ ) |
| 7 |
6
|
rpne0d |
⊢ ( 𝐴 ∈ ℝ → ( cos ‘ ( i · 𝐴 ) ) ≠ 0 ) |
| 8 |
5 7
|
tancld |
⊢ ( 𝐴 ∈ ℝ → ( tan ‘ ( i · 𝐴 ) ) ∈ ℂ ) |
| 9 |
2
|
a1i |
⊢ ( 𝐴 ∈ ℝ → i ∈ ℂ ) |
| 10 |
|
ine0 |
⊢ i ≠ 0 |
| 11 |
10
|
a1i |
⊢ ( 𝐴 ∈ ℝ → i ≠ 0 ) |
| 12 |
8 9 11
|
divnegd |
⊢ ( 𝐴 ∈ ℝ → - ( ( tan ‘ ( i · 𝐴 ) ) / i ) = ( - ( tan ‘ ( i · 𝐴 ) ) / i ) ) |
| 13 |
|
mulneg2 |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · - 𝐴 ) = - ( i · 𝐴 ) ) |
| 14 |
2 3 13
|
sylancr |
⊢ ( 𝐴 ∈ ℝ → ( i · - 𝐴 ) = - ( i · 𝐴 ) ) |
| 15 |
14
|
fveq2d |
⊢ ( 𝐴 ∈ ℝ → ( tan ‘ ( i · - 𝐴 ) ) = ( tan ‘ - ( i · 𝐴 ) ) ) |
| 16 |
|
tanneg |
⊢ ( ( ( i · 𝐴 ) ∈ ℂ ∧ ( cos ‘ ( i · 𝐴 ) ) ≠ 0 ) → ( tan ‘ - ( i · 𝐴 ) ) = - ( tan ‘ ( i · 𝐴 ) ) ) |
| 17 |
5 7 16
|
syl2anc |
⊢ ( 𝐴 ∈ ℝ → ( tan ‘ - ( i · 𝐴 ) ) = - ( tan ‘ ( i · 𝐴 ) ) ) |
| 18 |
15 17
|
eqtrd |
⊢ ( 𝐴 ∈ ℝ → ( tan ‘ ( i · - 𝐴 ) ) = - ( tan ‘ ( i · 𝐴 ) ) ) |
| 19 |
18
|
oveq1d |
⊢ ( 𝐴 ∈ ℝ → ( ( tan ‘ ( i · - 𝐴 ) ) / i ) = ( - ( tan ‘ ( i · 𝐴 ) ) / i ) ) |
| 20 |
12 19
|
eqtr4d |
⊢ ( 𝐴 ∈ ℝ → - ( ( tan ‘ ( i · 𝐴 ) ) / i ) = ( ( tan ‘ ( i · - 𝐴 ) ) / i ) ) |
| 21 |
|
renegcl |
⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) |
| 22 |
|
tanhlt1 |
⊢ ( - 𝐴 ∈ ℝ → ( ( tan ‘ ( i · - 𝐴 ) ) / i ) < 1 ) |
| 23 |
21 22
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( ( tan ‘ ( i · - 𝐴 ) ) / i ) < 1 ) |
| 24 |
20 23
|
eqbrtrd |
⊢ ( 𝐴 ∈ ℝ → - ( ( tan ‘ ( i · 𝐴 ) ) / i ) < 1 ) |
| 25 |
|
1re |
⊢ 1 ∈ ℝ |
| 26 |
|
ltnegcon1 |
⊢ ( ( ( ( tan ‘ ( i · 𝐴 ) ) / i ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( - ( ( tan ‘ ( i · 𝐴 ) ) / i ) < 1 ↔ - 1 < ( ( tan ‘ ( i · 𝐴 ) ) / i ) ) ) |
| 27 |
1 25 26
|
sylancl |
⊢ ( 𝐴 ∈ ℝ → ( - ( ( tan ‘ ( i · 𝐴 ) ) / i ) < 1 ↔ - 1 < ( ( tan ‘ ( i · 𝐴 ) ) / i ) ) ) |
| 28 |
24 27
|
mpbid |
⊢ ( 𝐴 ∈ ℝ → - 1 < ( ( tan ‘ ( i · 𝐴 ) ) / i ) ) |
| 29 |
|
tanhlt1 |
⊢ ( 𝐴 ∈ ℝ → ( ( tan ‘ ( i · 𝐴 ) ) / i ) < 1 ) |
| 30 |
|
neg1rr |
⊢ - 1 ∈ ℝ |
| 31 |
30
|
rexri |
⊢ - 1 ∈ ℝ* |
| 32 |
25
|
rexri |
⊢ 1 ∈ ℝ* |
| 33 |
|
elioo2 |
⊢ ( ( - 1 ∈ ℝ* ∧ 1 ∈ ℝ* ) → ( ( ( tan ‘ ( i · 𝐴 ) ) / i ) ∈ ( - 1 (,) 1 ) ↔ ( ( ( tan ‘ ( i · 𝐴 ) ) / i ) ∈ ℝ ∧ - 1 < ( ( tan ‘ ( i · 𝐴 ) ) / i ) ∧ ( ( tan ‘ ( i · 𝐴 ) ) / i ) < 1 ) ) ) |
| 34 |
31 32 33
|
mp2an |
⊢ ( ( ( tan ‘ ( i · 𝐴 ) ) / i ) ∈ ( - 1 (,) 1 ) ↔ ( ( ( tan ‘ ( i · 𝐴 ) ) / i ) ∈ ℝ ∧ - 1 < ( ( tan ‘ ( i · 𝐴 ) ) / i ) ∧ ( ( tan ‘ ( i · 𝐴 ) ) / i ) < 1 ) ) |
| 35 |
1 28 29 34
|
syl3anbrc |
⊢ ( 𝐴 ∈ ℝ → ( ( tan ‘ ( i · 𝐴 ) ) / i ) ∈ ( - 1 (,) 1 ) ) |