Step |
Hyp |
Ref |
Expression |
1 |
|
ax-icn |
⊢ i ∈ ℂ |
2 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
3 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) |
4 |
1 2 3
|
sylancr |
⊢ ( 𝐴 ∈ ℝ → ( i · 𝐴 ) ∈ ℂ ) |
5 |
|
rpcoshcl |
⊢ ( 𝐴 ∈ ℝ → ( cos ‘ ( i · 𝐴 ) ) ∈ ℝ+ ) |
6 |
5
|
rpne0d |
⊢ ( 𝐴 ∈ ℝ → ( cos ‘ ( i · 𝐴 ) ) ≠ 0 ) |
7 |
|
tanval |
⊢ ( ( ( i · 𝐴 ) ∈ ℂ ∧ ( cos ‘ ( i · 𝐴 ) ) ≠ 0 ) → ( tan ‘ ( i · 𝐴 ) ) = ( ( sin ‘ ( i · 𝐴 ) ) / ( cos ‘ ( i · 𝐴 ) ) ) ) |
8 |
4 6 7
|
syl2anc |
⊢ ( 𝐴 ∈ ℝ → ( tan ‘ ( i · 𝐴 ) ) = ( ( sin ‘ ( i · 𝐴 ) ) / ( cos ‘ ( i · 𝐴 ) ) ) ) |
9 |
8
|
oveq1d |
⊢ ( 𝐴 ∈ ℝ → ( ( tan ‘ ( i · 𝐴 ) ) / i ) = ( ( ( sin ‘ ( i · 𝐴 ) ) / ( cos ‘ ( i · 𝐴 ) ) ) / i ) ) |
10 |
4
|
sincld |
⊢ ( 𝐴 ∈ ℝ → ( sin ‘ ( i · 𝐴 ) ) ∈ ℂ ) |
11 |
|
recoshcl |
⊢ ( 𝐴 ∈ ℝ → ( cos ‘ ( i · 𝐴 ) ) ∈ ℝ ) |
12 |
11
|
recnd |
⊢ ( 𝐴 ∈ ℝ → ( cos ‘ ( i · 𝐴 ) ) ∈ ℂ ) |
13 |
1
|
a1i |
⊢ ( 𝐴 ∈ ℝ → i ∈ ℂ ) |
14 |
|
ine0 |
⊢ i ≠ 0 |
15 |
14
|
a1i |
⊢ ( 𝐴 ∈ ℝ → i ≠ 0 ) |
16 |
10 12 13 6 15
|
divdiv32d |
⊢ ( 𝐴 ∈ ℝ → ( ( ( sin ‘ ( i · 𝐴 ) ) / ( cos ‘ ( i · 𝐴 ) ) ) / i ) = ( ( ( sin ‘ ( i · 𝐴 ) ) / i ) / ( cos ‘ ( i · 𝐴 ) ) ) ) |
17 |
|
sinhval |
⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ ( i · 𝐴 ) ) / i ) = ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ) |
18 |
2 17
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( ( sin ‘ ( i · 𝐴 ) ) / i ) = ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ) |
19 |
|
coshval |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( i · 𝐴 ) ) = ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) / 2 ) ) |
20 |
2 19
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( cos ‘ ( i · 𝐴 ) ) = ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) / 2 ) ) |
21 |
18 20
|
oveq12d |
⊢ ( 𝐴 ∈ ℝ → ( ( ( sin ‘ ( i · 𝐴 ) ) / i ) / ( cos ‘ ( i · 𝐴 ) ) ) = ( ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) / ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) / 2 ) ) ) |
22 |
9 16 21
|
3eqtrd |
⊢ ( 𝐴 ∈ ℝ → ( ( tan ‘ ( i · 𝐴 ) ) / i ) = ( ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) / ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) / 2 ) ) ) |
23 |
|
reefcl |
⊢ ( 𝐴 ∈ ℝ → ( exp ‘ 𝐴 ) ∈ ℝ ) |
24 |
|
renegcl |
⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) |
25 |
24
|
reefcld |
⊢ ( 𝐴 ∈ ℝ → ( exp ‘ - 𝐴 ) ∈ ℝ ) |
26 |
23 25
|
resubcld |
⊢ ( 𝐴 ∈ ℝ → ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) ∈ ℝ ) |
27 |
26
|
recnd |
⊢ ( 𝐴 ∈ ℝ → ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) ∈ ℂ ) |
28 |
23 25
|
readdcld |
⊢ ( 𝐴 ∈ ℝ → ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) ∈ ℝ ) |
29 |
28
|
recnd |
⊢ ( 𝐴 ∈ ℝ → ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) ∈ ℂ ) |
30 |
|
2cnd |
⊢ ( 𝐴 ∈ ℝ → 2 ∈ ℂ ) |
31 |
20 6
|
eqnetrrd |
⊢ ( 𝐴 ∈ ℝ → ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) / 2 ) ≠ 0 ) |
32 |
|
2ne0 |
⊢ 2 ≠ 0 |
33 |
32
|
a1i |
⊢ ( 𝐴 ∈ ℝ → 2 ≠ 0 ) |
34 |
29 30 33
|
divne0bd |
⊢ ( 𝐴 ∈ ℝ → ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) ≠ 0 ↔ ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) / 2 ) ≠ 0 ) ) |
35 |
31 34
|
mpbird |
⊢ ( 𝐴 ∈ ℝ → ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) ≠ 0 ) |
36 |
27 29 30 35 33
|
divcan7d |
⊢ ( 𝐴 ∈ ℝ → ( ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) / ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) / 2 ) ) = ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) ) ) |
37 |
22 36
|
eqtrd |
⊢ ( 𝐴 ∈ ℝ → ( ( tan ‘ ( i · 𝐴 ) ) / i ) = ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) ) ) |
38 |
24
|
rpefcld |
⊢ ( 𝐴 ∈ ℝ → ( exp ‘ - 𝐴 ) ∈ ℝ+ ) |
39 |
23 38
|
ltsubrpd |
⊢ ( 𝐴 ∈ ℝ → ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) < ( exp ‘ 𝐴 ) ) |
40 |
23 38
|
ltaddrpd |
⊢ ( 𝐴 ∈ ℝ → ( exp ‘ 𝐴 ) < ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) ) |
41 |
26 23 28 39 40
|
lttrd |
⊢ ( 𝐴 ∈ ℝ → ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) < ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) ) |
42 |
29
|
mulid1d |
⊢ ( 𝐴 ∈ ℝ → ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) · 1 ) = ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) ) |
43 |
41 42
|
breqtrrd |
⊢ ( 𝐴 ∈ ℝ → ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) < ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) · 1 ) ) |
44 |
|
1red |
⊢ ( 𝐴 ∈ ℝ → 1 ∈ ℝ ) |
45 |
|
efgt0 |
⊢ ( 𝐴 ∈ ℝ → 0 < ( exp ‘ 𝐴 ) ) |
46 |
|
efgt0 |
⊢ ( - 𝐴 ∈ ℝ → 0 < ( exp ‘ - 𝐴 ) ) |
47 |
24 46
|
syl |
⊢ ( 𝐴 ∈ ℝ → 0 < ( exp ‘ - 𝐴 ) ) |
48 |
23 25 45 47
|
addgt0d |
⊢ ( 𝐴 ∈ ℝ → 0 < ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) ) |
49 |
|
ltdivmul |
⊢ ( ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) ∈ ℝ ∧ 0 < ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) ) ) → ( ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) ) < 1 ↔ ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) < ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) · 1 ) ) ) |
50 |
26 44 28 48 49
|
syl112anc |
⊢ ( 𝐴 ∈ ℝ → ( ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) ) < 1 ↔ ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) < ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) · 1 ) ) ) |
51 |
43 50
|
mpbird |
⊢ ( 𝐴 ∈ ℝ → ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) ) < 1 ) |
52 |
37 51
|
eqbrtrd |
⊢ ( 𝐴 ∈ ℝ → ( ( tan ‘ ( i · 𝐴 ) ) / i ) < 1 ) |