| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coscl | ⊢ ( 𝐴  ∈  ℂ  →  ( cos ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 2 |  | sincl | ⊢ ( 𝐴  ∈  ℂ  →  ( sin ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 3 |  | divneg | ⊢ ( ( ( sin ‘ 𝐴 )  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ≠  0 )  →  - ( ( sin ‘ 𝐴 )  /  ( cos ‘ 𝐴 ) )  =  ( - ( sin ‘ 𝐴 )  /  ( cos ‘ 𝐴 ) ) ) | 
						
							| 4 | 2 3 | syl3an1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ≠  0 )  →  - ( ( sin ‘ 𝐴 )  /  ( cos ‘ 𝐴 ) )  =  ( - ( sin ‘ 𝐴 )  /  ( cos ‘ 𝐴 ) ) ) | 
						
							| 5 | 1 4 | syl3an2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ≠  0 )  →  - ( ( sin ‘ 𝐴 )  /  ( cos ‘ 𝐴 ) )  =  ( - ( sin ‘ 𝐴 )  /  ( cos ‘ 𝐴 ) ) ) | 
						
							| 6 | 5 | 3anidm12 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ≠  0 )  →  - ( ( sin ‘ 𝐴 )  /  ( cos ‘ 𝐴 ) )  =  ( - ( sin ‘ 𝐴 )  /  ( cos ‘ 𝐴 ) ) ) | 
						
							| 7 |  | tanval | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ≠  0 )  →  ( tan ‘ 𝐴 )  =  ( ( sin ‘ 𝐴 )  /  ( cos ‘ 𝐴 ) ) ) | 
						
							| 8 | 7 | negeqd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ≠  0 )  →  - ( tan ‘ 𝐴 )  =  - ( ( sin ‘ 𝐴 )  /  ( cos ‘ 𝐴 ) ) ) | 
						
							| 9 |  | negcl | ⊢ ( 𝐴  ∈  ℂ  →  - 𝐴  ∈  ℂ ) | 
						
							| 10 |  | cosneg | ⊢ ( 𝐴  ∈  ℂ  →  ( cos ‘ - 𝐴 )  =  ( cos ‘ 𝐴 ) ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ≠  0 )  →  ( cos ‘ - 𝐴 )  =  ( cos ‘ 𝐴 ) ) | 
						
							| 12 |  | simpr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ≠  0 )  →  ( cos ‘ 𝐴 )  ≠  0 ) | 
						
							| 13 | 11 12 | eqnetrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ≠  0 )  →  ( cos ‘ - 𝐴 )  ≠  0 ) | 
						
							| 14 |  | tanval | ⊢ ( ( - 𝐴  ∈  ℂ  ∧  ( cos ‘ - 𝐴 )  ≠  0 )  →  ( tan ‘ - 𝐴 )  =  ( ( sin ‘ - 𝐴 )  /  ( cos ‘ - 𝐴 ) ) ) | 
						
							| 15 | 9 13 14 | syl2an2r | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ≠  0 )  →  ( tan ‘ - 𝐴 )  =  ( ( sin ‘ - 𝐴 )  /  ( cos ‘ - 𝐴 ) ) ) | 
						
							| 16 |  | sinneg | ⊢ ( 𝐴  ∈  ℂ  →  ( sin ‘ - 𝐴 )  =  - ( sin ‘ 𝐴 ) ) | 
						
							| 17 | 16 10 | oveq12d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( sin ‘ - 𝐴 )  /  ( cos ‘ - 𝐴 ) )  =  ( - ( sin ‘ 𝐴 )  /  ( cos ‘ 𝐴 ) ) ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ≠  0 )  →  ( ( sin ‘ - 𝐴 )  /  ( cos ‘ - 𝐴 ) )  =  ( - ( sin ‘ 𝐴 )  /  ( cos ‘ 𝐴 ) ) ) | 
						
							| 19 | 15 18 | eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ≠  0 )  →  ( tan ‘ - 𝐴 )  =  ( - ( sin ‘ 𝐴 )  /  ( cos ‘ 𝐴 ) ) ) | 
						
							| 20 | 6 8 19 | 3eqtr4rd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ≠  0 )  →  ( tan ‘ - 𝐴 )  =  - ( tan ‘ 𝐴 ) ) |