Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → 𝐴 ∈ ℂ ) |
2 |
|
coscl |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) ∈ ℂ ) |
3 |
2
|
anim1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( cos ‘ 𝐴 ) ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) ) |
4 |
|
eldifsn |
⊢ ( ( cos ‘ 𝐴 ) ∈ ( ℂ ∖ { 0 } ) ↔ ( ( cos ‘ 𝐴 ) ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) ) |
5 |
3 4
|
sylibr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( cos ‘ 𝐴 ) ∈ ( ℂ ∖ { 0 } ) ) |
6 |
|
cosf |
⊢ cos : ℂ ⟶ ℂ |
7 |
|
ffn |
⊢ ( cos : ℂ ⟶ ℂ → cos Fn ℂ ) |
8 |
|
elpreima |
⊢ ( cos Fn ℂ → ( 𝐴 ∈ ( ◡ cos “ ( ℂ ∖ { 0 } ) ) ↔ ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ∈ ( ℂ ∖ { 0 } ) ) ) ) |
9 |
6 7 8
|
mp2b |
⊢ ( 𝐴 ∈ ( ◡ cos “ ( ℂ ∖ { 0 } ) ) ↔ ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ∈ ( ℂ ∖ { 0 } ) ) ) |
10 |
1 5 9
|
sylanbrc |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → 𝐴 ∈ ( ◡ cos “ ( ℂ ∖ { 0 } ) ) ) |
11 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( sin ‘ 𝑥 ) = ( sin ‘ 𝐴 ) ) |
12 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( cos ‘ 𝑥 ) = ( cos ‘ 𝐴 ) ) |
13 |
11 12
|
oveq12d |
⊢ ( 𝑥 = 𝐴 → ( ( sin ‘ 𝑥 ) / ( cos ‘ 𝑥 ) ) = ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) |
14 |
|
df-tan |
⊢ tan = ( 𝑥 ∈ ( ◡ cos “ ( ℂ ∖ { 0 } ) ) ↦ ( ( sin ‘ 𝑥 ) / ( cos ‘ 𝑥 ) ) ) |
15 |
|
ovex |
⊢ ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ∈ V |
16 |
13 14 15
|
fvmpt |
⊢ ( 𝐴 ∈ ( ◡ cos “ ( ℂ ∖ { 0 } ) ) → ( tan ‘ 𝐴 ) = ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) |
17 |
10 16
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ 𝐴 ) = ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) |