Step |
Hyp |
Ref |
Expression |
1 |
|
taylfval.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
2 |
|
taylfval.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
3 |
|
taylfval.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑆 ) |
4 |
|
taylfval.n |
⊢ ( 𝜑 → ( 𝑁 ∈ ℕ0 ∨ 𝑁 = +∞ ) ) |
5 |
|
taylfval.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ) → 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ) |
6 |
|
taylfval.t |
⊢ 𝑇 = ( 𝑁 ( 𝑆 Tayl 𝐹 ) 𝐵 ) |
7 |
|
recnprss |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) |
8 |
1 7
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
9 |
3 8
|
sstrd |
⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
10 |
|
fveq2 |
⊢ ( 𝑘 = 0 → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ 0 ) ) |
11 |
10
|
dmeqd |
⊢ ( 𝑘 = 0 → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) = dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 0 ) ) |
12 |
11
|
eleq2d |
⊢ ( 𝑘 = 0 → ( 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ↔ 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 0 ) ) ) |
13 |
5
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ) |
14 |
|
elxnn0 |
⊢ ( 𝑁 ∈ ℕ0* ↔ ( 𝑁 ∈ ℕ0 ∨ 𝑁 = +∞ ) ) |
15 |
|
0xr |
⊢ 0 ∈ ℝ* |
16 |
15
|
a1i |
⊢ ( 𝑁 ∈ ℕ0* → 0 ∈ ℝ* ) |
17 |
|
xnn0xr |
⊢ ( 𝑁 ∈ ℕ0* → 𝑁 ∈ ℝ* ) |
18 |
|
xnn0ge0 |
⊢ ( 𝑁 ∈ ℕ0* → 0 ≤ 𝑁 ) |
19 |
|
lbicc2 |
⊢ ( ( 0 ∈ ℝ* ∧ 𝑁 ∈ ℝ* ∧ 0 ≤ 𝑁 ) → 0 ∈ ( 0 [,] 𝑁 ) ) |
20 |
16 17 18 19
|
syl3anc |
⊢ ( 𝑁 ∈ ℕ0* → 0 ∈ ( 0 [,] 𝑁 ) ) |
21 |
14 20
|
sylbir |
⊢ ( ( 𝑁 ∈ ℕ0 ∨ 𝑁 = +∞ ) → 0 ∈ ( 0 [,] 𝑁 ) ) |
22 |
4 21
|
syl |
⊢ ( 𝜑 → 0 ∈ ( 0 [,] 𝑁 ) ) |
23 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
24 |
22 23
|
elind |
⊢ ( 𝜑 → 0 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ) |
25 |
12 13 24
|
rspcdva |
⊢ ( 𝜑 → 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 0 ) ) |
26 |
|
cnex |
⊢ ℂ ∈ V |
27 |
26
|
a1i |
⊢ ( 𝜑 → ℂ ∈ V ) |
28 |
|
elpm2r |
⊢ ( ( ( ℂ ∈ V ∧ 𝑆 ∈ { ℝ , ℂ } ) ∧ ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ) → 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) |
29 |
27 1 2 3 28
|
syl22anc |
⊢ ( 𝜑 → 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) |
30 |
|
dvn0 |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 0 ) = 𝐹 ) |
31 |
8 29 30
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 𝐹 ) ‘ 0 ) = 𝐹 ) |
32 |
31
|
dmeqd |
⊢ ( 𝜑 → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 0 ) = dom 𝐹 ) |
33 |
2
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
34 |
32 33
|
eqtrd |
⊢ ( 𝜑 → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 0 ) = 𝐴 ) |
35 |
25 34
|
eleqtrd |
⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) |
36 |
9 35
|
sseldd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
37 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
38 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
39 |
|
cnring |
⊢ ℂfld ∈ Ring |
40 |
|
ringmnd |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ Mnd ) |
41 |
39 40
|
mp1i |
⊢ ( 𝜑 → ℂfld ∈ Mnd ) |
42 |
|
ovex |
⊢ ( 0 [,] 𝑁 ) ∈ V |
43 |
42
|
inex1 |
⊢ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ∈ V |
44 |
43
|
a1i |
⊢ ( 𝜑 → ( ( 0 [,] 𝑁 ) ∩ ℤ ) ∈ V ) |
45 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ) → 𝑆 ∈ { ℝ , ℂ } ) |
46 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ) → 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) |
47 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ) → 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ) |
48 |
47
|
elin2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ) → 𝑘 ∈ ℤ ) |
49 |
47
|
elin1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ) → 𝑘 ∈ ( 0 [,] 𝑁 ) ) |
50 |
|
nn0re |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) |
51 |
50
|
rexrd |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ* ) |
52 |
|
id |
⊢ ( 𝑁 = +∞ → 𝑁 = +∞ ) |
53 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
54 |
52 53
|
eqeltrdi |
⊢ ( 𝑁 = +∞ → 𝑁 ∈ ℝ* ) |
55 |
51 54
|
jaoi |
⊢ ( ( 𝑁 ∈ ℕ0 ∨ 𝑁 = +∞ ) → 𝑁 ∈ ℝ* ) |
56 |
4 55
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℝ* ) |
57 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ) → 𝑁 ∈ ℝ* ) |
58 |
|
elicc1 |
⊢ ( ( 0 ∈ ℝ* ∧ 𝑁 ∈ ℝ* ) → ( 𝑘 ∈ ( 0 [,] 𝑁 ) ↔ ( 𝑘 ∈ ℝ* ∧ 0 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁 ) ) ) |
59 |
15 57 58
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ) → ( 𝑘 ∈ ( 0 [,] 𝑁 ) ↔ ( 𝑘 ∈ ℝ* ∧ 0 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁 ) ) ) |
60 |
49 59
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ) → ( 𝑘 ∈ ℝ* ∧ 0 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁 ) ) |
61 |
60
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ) → 0 ≤ 𝑘 ) |
62 |
|
elnn0z |
⊢ ( 𝑘 ∈ ℕ0 ↔ ( 𝑘 ∈ ℤ ∧ 0 ≤ 𝑘 ) ) |
63 |
48 61 62
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ) → 𝑘 ∈ ℕ0 ) |
64 |
|
dvnf |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) : dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ⟶ ℂ ) |
65 |
45 46 63 64
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) : dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ⟶ ℂ ) |
66 |
65 5
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ) → ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) ∈ ℂ ) |
67 |
63
|
faccld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ) → ( ! ‘ 𝑘 ) ∈ ℕ ) |
68 |
67
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ) → ( ! ‘ 𝑘 ) ∈ ℂ ) |
69 |
67
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ) → ( ! ‘ 𝑘 ) ≠ 0 ) |
70 |
66 68 69
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ) → ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) ∈ ℂ ) |
71 |
|
0cnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ) → 0 ∈ ℂ ) |
72 |
71 63
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ) → ( 0 ↑ 𝑘 ) ∈ ℂ ) |
73 |
70 72
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ) → ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 0 ↑ 𝑘 ) ) ∈ ℂ ) |
74 |
73
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 0 ↑ 𝑘 ) ) ) : ( ( 0 [,] 𝑁 ) ∩ ℤ ) ⟶ ℂ ) |
75 |
|
eldifi |
⊢ ( 𝑘 ∈ ( ( ( 0 [,] 𝑁 ) ∩ ℤ ) ∖ { 0 } ) → 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ) |
76 |
75 63
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 [,] 𝑁 ) ∩ ℤ ) ∖ { 0 } ) ) → 𝑘 ∈ ℕ0 ) |
77 |
|
eldifsni |
⊢ ( 𝑘 ∈ ( ( ( 0 [,] 𝑁 ) ∩ ℤ ) ∖ { 0 } ) → 𝑘 ≠ 0 ) |
78 |
77
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 [,] 𝑁 ) ∩ ℤ ) ∖ { 0 } ) ) → 𝑘 ≠ 0 ) |
79 |
|
elnnne0 |
⊢ ( 𝑘 ∈ ℕ ↔ ( 𝑘 ∈ ℕ0 ∧ 𝑘 ≠ 0 ) ) |
80 |
76 78 79
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 [,] 𝑁 ) ∩ ℤ ) ∖ { 0 } ) ) → 𝑘 ∈ ℕ ) |
81 |
80
|
0expd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 [,] 𝑁 ) ∩ ℤ ) ∖ { 0 } ) ) → ( 0 ↑ 𝑘 ) = 0 ) |
82 |
81
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 [,] 𝑁 ) ∩ ℤ ) ∖ { 0 } ) ) → ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 0 ↑ 𝑘 ) ) = ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · 0 ) ) |
83 |
70
|
mul01d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ) → ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · 0 ) = 0 ) |
84 |
75 83
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 [,] 𝑁 ) ∩ ℤ ) ∖ { 0 } ) ) → ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · 0 ) = 0 ) |
85 |
82 84
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 [,] 𝑁 ) ∩ ℤ ) ∖ { 0 } ) ) → ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 0 ↑ 𝑘 ) ) = 0 ) |
86 |
|
zex |
⊢ ℤ ∈ V |
87 |
86
|
inex2 |
⊢ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ∈ V |
88 |
87
|
a1i |
⊢ ( 𝜑 → ( ( 0 [,] 𝑁 ) ∩ ℤ ) ∈ V ) |
89 |
85 88
|
suppss2 |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 0 ↑ 𝑘 ) ) ) supp 0 ) ⊆ { 0 } ) |
90 |
37 38 41 44 24 74 89
|
gsumpt |
⊢ ( 𝜑 → ( ℂfld Σg ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 0 ↑ 𝑘 ) ) ) ) = ( ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 0 ↑ 𝑘 ) ) ) ‘ 0 ) ) |
91 |
10
|
fveq1d |
⊢ ( 𝑘 = 0 → ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) = ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 0 ) ‘ 𝐵 ) ) |
92 |
|
fveq2 |
⊢ ( 𝑘 = 0 → ( ! ‘ 𝑘 ) = ( ! ‘ 0 ) ) |
93 |
|
fac0 |
⊢ ( ! ‘ 0 ) = 1 |
94 |
92 93
|
eqtrdi |
⊢ ( 𝑘 = 0 → ( ! ‘ 𝑘 ) = 1 ) |
95 |
91 94
|
oveq12d |
⊢ ( 𝑘 = 0 → ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) = ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 0 ) ‘ 𝐵 ) / 1 ) ) |
96 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( 0 ↑ 𝑘 ) = ( 0 ↑ 0 ) ) |
97 |
|
0exp0e1 |
⊢ ( 0 ↑ 0 ) = 1 |
98 |
96 97
|
eqtrdi |
⊢ ( 𝑘 = 0 → ( 0 ↑ 𝑘 ) = 1 ) |
99 |
95 98
|
oveq12d |
⊢ ( 𝑘 = 0 → ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 0 ↑ 𝑘 ) ) = ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 0 ) ‘ 𝐵 ) / 1 ) · 1 ) ) |
100 |
|
eqid |
⊢ ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 0 ↑ 𝑘 ) ) ) = ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 0 ↑ 𝑘 ) ) ) |
101 |
|
ovex |
⊢ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 0 ) ‘ 𝐵 ) / 1 ) · 1 ) ∈ V |
102 |
99 100 101
|
fvmpt |
⊢ ( 0 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) → ( ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 0 ↑ 𝑘 ) ) ) ‘ 0 ) = ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 0 ) ‘ 𝐵 ) / 1 ) · 1 ) ) |
103 |
24 102
|
syl |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 0 ↑ 𝑘 ) ) ) ‘ 0 ) = ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 0 ) ‘ 𝐵 ) / 1 ) · 1 ) ) |
104 |
31
|
fveq1d |
⊢ ( 𝜑 → ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 0 ) ‘ 𝐵 ) = ( 𝐹 ‘ 𝐵 ) ) |
105 |
104
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 0 ) ‘ 𝐵 ) / 1 ) = ( ( 𝐹 ‘ 𝐵 ) / 1 ) ) |
106 |
2 35
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ∈ ℂ ) |
107 |
106
|
div1d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐵 ) / 1 ) = ( 𝐹 ‘ 𝐵 ) ) |
108 |
105 107
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 0 ) ‘ 𝐵 ) / 1 ) = ( 𝐹 ‘ 𝐵 ) ) |
109 |
108
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 0 ) ‘ 𝐵 ) / 1 ) · 1 ) = ( ( 𝐹 ‘ 𝐵 ) · 1 ) ) |
110 |
106
|
mulid1d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐵 ) · 1 ) = ( 𝐹 ‘ 𝐵 ) ) |
111 |
109 110
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 0 ) ‘ 𝐵 ) / 1 ) · 1 ) = ( 𝐹 ‘ 𝐵 ) ) |
112 |
90 103 111
|
3eqtrd |
⊢ ( 𝜑 → ( ℂfld Σg ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 0 ↑ 𝑘 ) ) ) ) = ( 𝐹 ‘ 𝐵 ) ) |
113 |
|
ringcmn |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ CMnd ) |
114 |
39 113
|
mp1i |
⊢ ( 𝜑 → ℂfld ∈ CMnd ) |
115 |
|
cnfldtps |
⊢ ℂfld ∈ TopSp |
116 |
115
|
a1i |
⊢ ( 𝜑 → ℂfld ∈ TopSp ) |
117 |
|
mptexg |
⊢ ( ( ( 0 [,] 𝑁 ) ∩ ℤ ) ∈ V → ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 0 ↑ 𝑘 ) ) ) ∈ V ) |
118 |
87 117
|
mp1i |
⊢ ( 𝜑 → ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 0 ↑ 𝑘 ) ) ) ∈ V ) |
119 |
|
funmpt |
⊢ Fun ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 0 ↑ 𝑘 ) ) ) |
120 |
119
|
a1i |
⊢ ( 𝜑 → Fun ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 0 ↑ 𝑘 ) ) ) ) |
121 |
|
c0ex |
⊢ 0 ∈ V |
122 |
121
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
123 |
|
snfi |
⊢ { 0 } ∈ Fin |
124 |
123
|
a1i |
⊢ ( 𝜑 → { 0 } ∈ Fin ) |
125 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 0 ↑ 𝑘 ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 0 ↑ 𝑘 ) ) ) ∧ 0 ∈ V ) ∧ ( { 0 } ∈ Fin ∧ ( ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 0 ↑ 𝑘 ) ) ) supp 0 ) ⊆ { 0 } ) ) → ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 0 ↑ 𝑘 ) ) ) finSupp 0 ) |
126 |
118 120 122 124 89 125
|
syl32anc |
⊢ ( 𝜑 → ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 0 ↑ 𝑘 ) ) ) finSupp 0 ) |
127 |
37 38 114 116 44 74 126
|
tsmsid |
⊢ ( 𝜑 → ( ℂfld Σg ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 0 ↑ 𝑘 ) ) ) ) ∈ ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 0 ↑ 𝑘 ) ) ) ) ) |
128 |
112 127
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ∈ ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 0 ↑ 𝑘 ) ) ) ) ) |
129 |
36
|
subidd |
⊢ ( 𝜑 → ( 𝐵 − 𝐵 ) = 0 ) |
130 |
129
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐵 − 𝐵 ) ↑ 𝑘 ) = ( 0 ↑ 𝑘 ) ) |
131 |
130
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝐵 − 𝐵 ) ↑ 𝑘 ) ) = ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 0 ↑ 𝑘 ) ) ) |
132 |
131
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝐵 − 𝐵 ) ↑ 𝑘 ) ) ) = ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 0 ↑ 𝑘 ) ) ) ) |
133 |
132
|
oveq2d |
⊢ ( 𝜑 → ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝐵 − 𝐵 ) ↑ 𝑘 ) ) ) ) = ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 0 ↑ 𝑘 ) ) ) ) ) |
134 |
128 133
|
eleqtrrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ∈ ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝐵 − 𝐵 ) ↑ 𝑘 ) ) ) ) ) |
135 |
1 2 3 4 5 6
|
eltayl |
⊢ ( 𝜑 → ( 𝐵 𝑇 ( 𝐹 ‘ 𝐵 ) ↔ ( 𝐵 ∈ ℂ ∧ ( 𝐹 ‘ 𝐵 ) ∈ ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝐵 − 𝐵 ) ↑ 𝑘 ) ) ) ) ) ) ) |
136 |
36 134 135
|
mpbir2and |
⊢ ( 𝜑 → 𝐵 𝑇 ( 𝐹 ‘ 𝐵 ) ) |
137 |
1 2 3 4 5 6
|
taylf |
⊢ ( 𝜑 → 𝑇 : dom 𝑇 ⟶ ℂ ) |
138 |
|
ffun |
⊢ ( 𝑇 : dom 𝑇 ⟶ ℂ → Fun 𝑇 ) |
139 |
|
funbrfv2b |
⊢ ( Fun 𝑇 → ( 𝐵 𝑇 ( 𝐹 ‘ 𝐵 ) ↔ ( 𝐵 ∈ dom 𝑇 ∧ ( 𝑇 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐵 ) ) ) ) |
140 |
137 138 139
|
3syl |
⊢ ( 𝜑 → ( 𝐵 𝑇 ( 𝐹 ‘ 𝐵 ) ↔ ( 𝐵 ∈ dom 𝑇 ∧ ( 𝑇 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐵 ) ) ) ) |
141 |
136 140
|
mpbid |
⊢ ( 𝜑 → ( 𝐵 ∈ dom 𝑇 ∧ ( 𝑇 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐵 ) ) ) |