Step |
Hyp |
Ref |
Expression |
1 |
|
taylfval.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
2 |
|
taylfval.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
3 |
|
taylfval.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑆 ) |
4 |
|
taylfval.n |
⊢ ( 𝜑 → ( 𝑁 ∈ ℕ0 ∨ 𝑁 = +∞ ) ) |
5 |
|
taylfval.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ) → 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ) |
6 |
|
taylfval.t |
⊢ 𝑇 = ( 𝑁 ( 𝑆 Tayl 𝐹 ) 𝐵 ) |
7 |
1 2 3 4 5 6
|
taylfval |
⊢ ( 𝜑 → 𝑇 = ∪ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝐵 ) ↑ 𝑘 ) ) ) ) ) ) |
8 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝑥 ∈ ℂ ) |
9 |
8
|
snssd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → { 𝑥 } ⊆ ℂ ) |
10 |
1 2 3 4 5
|
taylfvallem |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝐵 ) ↑ 𝑘 ) ) ) ) ⊆ ℂ ) |
11 |
|
xpss12 |
⊢ ( ( { 𝑥 } ⊆ ℂ ∧ ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝐵 ) ↑ 𝑘 ) ) ) ) ⊆ ℂ ) → ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝐵 ) ↑ 𝑘 ) ) ) ) ) ⊆ ( ℂ × ℂ ) ) |
12 |
9 10 11
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝐵 ) ↑ 𝑘 ) ) ) ) ) ⊆ ( ℂ × ℂ ) ) |
13 |
12
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝐵 ) ↑ 𝑘 ) ) ) ) ) ⊆ ( ℂ × ℂ ) ) |
14 |
|
iunss |
⊢ ( ∪ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝐵 ) ↑ 𝑘 ) ) ) ) ) ⊆ ( ℂ × ℂ ) ↔ ∀ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝐵 ) ↑ 𝑘 ) ) ) ) ) ⊆ ( ℂ × ℂ ) ) |
15 |
13 14
|
sylibr |
⊢ ( 𝜑 → ∪ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝐵 ) ↑ 𝑘 ) ) ) ) ) ⊆ ( ℂ × ℂ ) ) |
16 |
7 15
|
eqsstrd |
⊢ ( 𝜑 → 𝑇 ⊆ ( ℂ × ℂ ) ) |
17 |
|
relxp |
⊢ Rel ( ℂ × ℂ ) |
18 |
|
relss |
⊢ ( 𝑇 ⊆ ( ℂ × ℂ ) → ( Rel ( ℂ × ℂ ) → Rel 𝑇 ) ) |
19 |
16 17 18
|
mpisyl |
⊢ ( 𝜑 → Rel 𝑇 ) |
20 |
1 2 3 4 5 6
|
eltayl |
⊢ ( 𝜑 → ( 𝑥 𝑇 𝑦 ↔ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝐵 ) ↑ 𝑘 ) ) ) ) ) ) ) |
21 |
20
|
biimpd |
⊢ ( 𝜑 → ( 𝑥 𝑇 𝑦 → ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝐵 ) ↑ 𝑘 ) ) ) ) ) ) ) |
22 |
21
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑦 ( 𝑥 𝑇 𝑦 → ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝐵 ) ↑ 𝑘 ) ) ) ) ) ) ) |
23 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
24 |
|
cnring |
⊢ ℂfld ∈ Ring |
25 |
|
ringcmn |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ CMnd ) |
26 |
24 25
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ℂfld ∈ CMnd ) |
27 |
|
cnfldtps |
⊢ ℂfld ∈ TopSp |
28 |
27
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ℂfld ∈ TopSp ) |
29 |
|
ovex |
⊢ ( 0 [,] 𝑁 ) ∈ V |
30 |
29
|
inex1 |
⊢ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ∈ V |
31 |
30
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ( 0 [,] 𝑁 ) ∩ ℤ ) ∈ V ) |
32 |
1 2 3 4 5
|
taylfvallem1 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ) → ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝐵 ) ↑ 𝑘 ) ) ∈ ℂ ) |
33 |
32
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝐵 ) ↑ 𝑘 ) ) ) : ( ( 0 [,] 𝑁 ) ∩ ℤ ) ⟶ ℂ ) |
34 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
35 |
34
|
cnfldhaus |
⊢ ( TopOpen ‘ ℂfld ) ∈ Haus |
36 |
35
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( TopOpen ‘ ℂfld ) ∈ Haus ) |
37 |
23 26 28 31 33 34 36
|
haustsms |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ∃* 𝑦 𝑦 ∈ ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝐵 ) ↑ 𝑘 ) ) ) ) ) |
38 |
37
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ → ∃* 𝑦 𝑦 ∈ ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝐵 ) ↑ 𝑘 ) ) ) ) ) ) |
39 |
|
moanimv |
⊢ ( ∃* 𝑦 ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝐵 ) ↑ 𝑘 ) ) ) ) ) ↔ ( 𝑥 ∈ ℂ → ∃* 𝑦 𝑦 ∈ ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝐵 ) ↑ 𝑘 ) ) ) ) ) ) |
40 |
38 39
|
sylibr |
⊢ ( 𝜑 → ∃* 𝑦 ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝐵 ) ↑ 𝑘 ) ) ) ) ) ) |
41 |
|
moim |
⊢ ( ∀ 𝑦 ( 𝑥 𝑇 𝑦 → ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝐵 ) ↑ 𝑘 ) ) ) ) ) ) → ( ∃* 𝑦 ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝐵 ) ↑ 𝑘 ) ) ) ) ) → ∃* 𝑦 𝑥 𝑇 𝑦 ) ) |
42 |
22 40 41
|
sylc |
⊢ ( 𝜑 → ∃* 𝑦 𝑥 𝑇 𝑦 ) |
43 |
42
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑥 ∃* 𝑦 𝑥 𝑇 𝑦 ) |
44 |
|
dffun6 |
⊢ ( Fun 𝑇 ↔ ( Rel 𝑇 ∧ ∀ 𝑥 ∃* 𝑦 𝑥 𝑇 𝑦 ) ) |
45 |
19 43 44
|
sylanbrc |
⊢ ( 𝜑 → Fun 𝑇 ) |
46 |
45
|
funfnd |
⊢ ( 𝜑 → 𝑇 Fn dom 𝑇 ) |
47 |
|
rnss |
⊢ ( 𝑇 ⊆ ( ℂ × ℂ ) → ran 𝑇 ⊆ ran ( ℂ × ℂ ) ) |
48 |
16 47
|
syl |
⊢ ( 𝜑 → ran 𝑇 ⊆ ran ( ℂ × ℂ ) ) |
49 |
|
rnxpss |
⊢ ran ( ℂ × ℂ ) ⊆ ℂ |
50 |
48 49
|
sstrdi |
⊢ ( 𝜑 → ran 𝑇 ⊆ ℂ ) |
51 |
|
df-f |
⊢ ( 𝑇 : dom 𝑇 ⟶ ℂ ↔ ( 𝑇 Fn dom 𝑇 ∧ ran 𝑇 ⊆ ℂ ) ) |
52 |
46 50 51
|
sylanbrc |
⊢ ( 𝜑 → 𝑇 : dom 𝑇 ⟶ ℂ ) |