Metamath Proof Explorer


Theorem taylf

Description: The Taylor series defines a function on a subset of the complex numbers. (Contributed by Mario Carneiro, 30-Dec-2016)

Ref Expression
Hypotheses taylfval.s ( 𝜑𝑆 ∈ { ℝ , ℂ } )
taylfval.f ( 𝜑𝐹 : 𝐴 ⟶ ℂ )
taylfval.a ( 𝜑𝐴𝑆 )
taylfval.n ( 𝜑 → ( 𝑁 ∈ ℕ0𝑁 = +∞ ) )
taylfval.b ( ( 𝜑𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ) → 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) )
taylfval.t 𝑇 = ( 𝑁 ( 𝑆 Tayl 𝐹 ) 𝐵 )
Assertion taylf ( 𝜑𝑇 : dom 𝑇 ⟶ ℂ )

Proof

Step Hyp Ref Expression
1 taylfval.s ( 𝜑𝑆 ∈ { ℝ , ℂ } )
2 taylfval.f ( 𝜑𝐹 : 𝐴 ⟶ ℂ )
3 taylfval.a ( 𝜑𝐴𝑆 )
4 taylfval.n ( 𝜑 → ( 𝑁 ∈ ℕ0𝑁 = +∞ ) )
5 taylfval.b ( ( 𝜑𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ) → 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) )
6 taylfval.t 𝑇 = ( 𝑁 ( 𝑆 Tayl 𝐹 ) 𝐵 )
7 1 2 3 4 5 6 taylfval ( 𝜑𝑇 = 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) ) )
8 simpr ( ( 𝜑𝑥 ∈ ℂ ) → 𝑥 ∈ ℂ )
9 8 snssd ( ( 𝜑𝑥 ∈ ℂ ) → { 𝑥 } ⊆ ℂ )
10 1 2 3 4 5 taylfvallem ( ( 𝜑𝑥 ∈ ℂ ) → ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) ⊆ ℂ )
11 xpss12 ( ( { 𝑥 } ⊆ ℂ ∧ ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) ⊆ ℂ ) → ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) ) ⊆ ( ℂ × ℂ ) )
12 9 10 11 syl2anc ( ( 𝜑𝑥 ∈ ℂ ) → ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) ) ⊆ ( ℂ × ℂ ) )
13 12 ralrimiva ( 𝜑 → ∀ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) ) ⊆ ( ℂ × ℂ ) )
14 iunss ( 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) ) ⊆ ( ℂ × ℂ ) ↔ ∀ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) ) ⊆ ( ℂ × ℂ ) )
15 13 14 sylibr ( 𝜑 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) ) ⊆ ( ℂ × ℂ ) )
16 7 15 eqsstrd ( 𝜑𝑇 ⊆ ( ℂ × ℂ ) )
17 relxp Rel ( ℂ × ℂ )
18 relss ( 𝑇 ⊆ ( ℂ × ℂ ) → ( Rel ( ℂ × ℂ ) → Rel 𝑇 ) )
19 16 17 18 mpisyl ( 𝜑 → Rel 𝑇 )
20 1 2 3 4 5 6 eltayl ( 𝜑 → ( 𝑥 𝑇 𝑦 ↔ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) ) ) )
21 20 biimpd ( 𝜑 → ( 𝑥 𝑇 𝑦 → ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) ) ) )
22 21 alrimiv ( 𝜑 → ∀ 𝑦 ( 𝑥 𝑇 𝑦 → ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) ) ) )
23 cnfldbas ℂ = ( Base ‘ ℂfld )
24 cnring fld ∈ Ring
25 ringcmn ( ℂfld ∈ Ring → ℂfld ∈ CMnd )
26 24 25 mp1i ( ( 𝜑𝑥 ∈ ℂ ) → ℂfld ∈ CMnd )
27 cnfldtps fld ∈ TopSp
28 27 a1i ( ( 𝜑𝑥 ∈ ℂ ) → ℂfld ∈ TopSp )
29 ovex ( 0 [,] 𝑁 ) ∈ V
30 29 inex1 ( ( 0 [,] 𝑁 ) ∩ ℤ ) ∈ V
31 30 a1i ( ( 𝜑𝑥 ∈ ℂ ) → ( ( 0 [,] 𝑁 ) ∩ ℤ ) ∈ V )
32 1 2 3 4 5 taylfvallem1 ( ( ( 𝜑𝑥 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ) → ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ∈ ℂ )
33 32 fmpttd ( ( 𝜑𝑥 ∈ ℂ ) → ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) : ( ( 0 [,] 𝑁 ) ∩ ℤ ) ⟶ ℂ )
34 eqid ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld )
35 34 cnfldhaus ( TopOpen ‘ ℂfld ) ∈ Haus
36 35 a1i ( ( 𝜑𝑥 ∈ ℂ ) → ( TopOpen ‘ ℂfld ) ∈ Haus )
37 23 26 28 31 33 34 36 haustsms ( ( 𝜑𝑥 ∈ ℂ ) → ∃* 𝑦 𝑦 ∈ ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) )
38 37 ex ( 𝜑 → ( 𝑥 ∈ ℂ → ∃* 𝑦 𝑦 ∈ ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) ) )
39 moanimv ( ∃* 𝑦 ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) ) ↔ ( 𝑥 ∈ ℂ → ∃* 𝑦 𝑦 ∈ ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) ) )
40 38 39 sylibr ( 𝜑 → ∃* 𝑦 ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) ) )
41 moim ( ∀ 𝑦 ( 𝑥 𝑇 𝑦 → ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) ) ) → ( ∃* 𝑦 ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) ) → ∃* 𝑦 𝑥 𝑇 𝑦 ) )
42 22 40 41 sylc ( 𝜑 → ∃* 𝑦 𝑥 𝑇 𝑦 )
43 42 alrimiv ( 𝜑 → ∀ 𝑥 ∃* 𝑦 𝑥 𝑇 𝑦 )
44 dffun6 ( Fun 𝑇 ↔ ( Rel 𝑇 ∧ ∀ 𝑥 ∃* 𝑦 𝑥 𝑇 𝑦 ) )
45 19 43 44 sylanbrc ( 𝜑 → Fun 𝑇 )
46 45 funfnd ( 𝜑𝑇 Fn dom 𝑇 )
47 rnss ( 𝑇 ⊆ ( ℂ × ℂ ) → ran 𝑇 ⊆ ran ( ℂ × ℂ ) )
48 16 47 syl ( 𝜑 → ran 𝑇 ⊆ ran ( ℂ × ℂ ) )
49 rnxpss ran ( ℂ × ℂ ) ⊆ ℂ
50 48 49 sstrdi ( 𝜑 → ran 𝑇 ⊆ ℂ )
51 df-f ( 𝑇 : dom 𝑇 ⟶ ℂ ↔ ( 𝑇 Fn dom 𝑇 ∧ ran 𝑇 ⊆ ℂ ) )
52 46 50 51 sylanbrc ( 𝜑𝑇 : dom 𝑇 ⟶ ℂ )