Metamath Proof Explorer


Theorem taylpfval

Description: Define the Taylor polynomial of a function. The constant Tayl is a function of five arguments: S is the base set with respect to evaluate the derivatives (generally RR or CC ), F is the function we are approximating, at point B , to order N . The result is a polynomial function of x . (Contributed by Mario Carneiro, 31-Dec-2016)

Ref Expression
Hypotheses taylpfval.s ( 𝜑𝑆 ∈ { ℝ , ℂ } )
taylpfval.f ( 𝜑𝐹 : 𝐴 ⟶ ℂ )
taylpfval.a ( 𝜑𝐴𝑆 )
taylpfval.n ( 𝜑𝑁 ∈ ℕ0 )
taylpfval.b ( 𝜑𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) )
taylpfval.t 𝑇 = ( 𝑁 ( 𝑆 Tayl 𝐹 ) 𝐵 )
Assertion taylpfval ( 𝜑𝑇 = ( 𝑥 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) )

Proof

Step Hyp Ref Expression
1 taylpfval.s ( 𝜑𝑆 ∈ { ℝ , ℂ } )
2 taylpfval.f ( 𝜑𝐹 : 𝐴 ⟶ ℂ )
3 taylpfval.a ( 𝜑𝐴𝑆 )
4 taylpfval.n ( 𝜑𝑁 ∈ ℕ0 )
5 taylpfval.b ( 𝜑𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) )
6 taylpfval.t 𝑇 = ( 𝑁 ( 𝑆 Tayl 𝐹 ) 𝐵 )
7 4 orcd ( 𝜑 → ( 𝑁 ∈ ℕ0𝑁 = +∞ ) )
8 1 2 3 4 5 taylplem1 ( ( 𝜑𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ) → 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) )
9 1 2 3 7 8 6 taylfval ( 𝜑𝑇 = 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) ) )
10 cnfldbas ℂ = ( Base ‘ ℂfld )
11 cnfld0 0 = ( 0g ‘ ℂfld )
12 cnring fld ∈ Ring
13 ringcmn ( ℂfld ∈ Ring → ℂfld ∈ CMnd )
14 12 13 mp1i ( ( 𝜑𝑥 ∈ ℂ ) → ℂfld ∈ CMnd )
15 cnfldtps fld ∈ TopSp
16 15 a1i ( ( 𝜑𝑥 ∈ ℂ ) → ℂfld ∈ TopSp )
17 ovex ( 0 [,] 𝑁 ) ∈ V
18 17 inex1 ( ( 0 [,] 𝑁 ) ∩ ℤ ) ∈ V
19 18 a1i ( ( 𝜑𝑥 ∈ ℂ ) → ( ( 0 [,] 𝑁 ) ∩ ℤ ) ∈ V )
20 1 2 3 7 8 taylfvallem1 ( ( ( 𝜑𝑥 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ) → ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ∈ ℂ )
21 20 fmpttd ( ( 𝜑𝑥 ∈ ℂ ) → ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) : ( ( 0 [,] 𝑁 ) ∩ ℤ ) ⟶ ℂ )
22 eqid ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) = ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) )
23 0z 0 ∈ ℤ
24 4 nn0zd ( 𝜑𝑁 ∈ ℤ )
25 fzval2 ( ( 0 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 0 ... 𝑁 ) = ( ( 0 [,] 𝑁 ) ∩ ℤ ) )
26 23 24 25 sylancr ( 𝜑 → ( 0 ... 𝑁 ) = ( ( 0 [,] 𝑁 ) ∩ ℤ ) )
27 26 adantr ( ( 𝜑𝑥 ∈ ℂ ) → ( 0 ... 𝑁 ) = ( ( 0 [,] 𝑁 ) ∩ ℤ ) )
28 fzfid ( ( 𝜑𝑥 ∈ ℂ ) → ( 0 ... 𝑁 ) ∈ Fin )
29 27 28 eqeltrrd ( ( 𝜑𝑥 ∈ ℂ ) → ( ( 0 [,] 𝑁 ) ∩ ℤ ) ∈ Fin )
30 ovexd ( ( ( 𝜑𝑥 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ) → ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ∈ V )
31 c0ex 0 ∈ V
32 31 a1i ( ( 𝜑𝑥 ∈ ℂ ) → 0 ∈ V )
33 22 29 30 32 fsuppmptdm ( ( 𝜑𝑥 ∈ ℂ ) → ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) finSupp 0 )
34 eqid ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld )
35 34 cnfldhaus ( TopOpen ‘ ℂfld ) ∈ Haus
36 35 a1i ( ( 𝜑𝑥 ∈ ℂ ) → ( TopOpen ‘ ℂfld ) ∈ Haus )
37 10 11 14 16 19 21 33 34 36 haustsmsid ( ( 𝜑𝑥 ∈ ℂ ) → ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) = { ( ℂfld Σg ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) } )
38 29 20 gsumfsum ( ( 𝜑𝑥 ∈ ℂ ) → ( ℂfld Σg ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) = Σ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) )
39 27 sumeq1d ( ( 𝜑𝑥 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) = Σ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) )
40 38 39 eqtr4d ( ( 𝜑𝑥 ∈ ℂ ) → ( ℂfld Σg ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) )
41 40 sneqd ( ( 𝜑𝑥 ∈ ℂ ) → { ( ℂfld Σg ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) } = { Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) } )
42 37 41 eqtrd ( ( 𝜑𝑥 ∈ ℂ ) → ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) = { Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) } )
43 42 xpeq2d ( ( 𝜑𝑥 ∈ ℂ ) → ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) ) = ( { 𝑥 } × { Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) } ) )
44 43 iuneq2dv ( 𝜑 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) ) = 𝑥 ∈ ℂ ( { 𝑥 } × { Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) } ) )
45 9 44 eqtrd ( 𝜑𝑇 = 𝑥 ∈ ℂ ( { 𝑥 } × { Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) } ) )
46 dfmpt3 ( 𝑥 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) = 𝑥 ∈ ℂ ( { 𝑥 } × { Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) } )
47 45 46 eqtr4di ( 𝜑𝑇 = ( 𝑥 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) )