Metamath Proof Explorer


Theorem taylply

Description: The Taylor polynomial is a polynomial of degree (at most) N . (Contributed by Mario Carneiro, 31-Dec-2016)

Ref Expression
Hypotheses taylpfval.s ( 𝜑𝑆 ∈ { ℝ , ℂ } )
taylpfval.f ( 𝜑𝐹 : 𝐴 ⟶ ℂ )
taylpfval.a ( 𝜑𝐴𝑆 )
taylpfval.n ( 𝜑𝑁 ∈ ℕ0 )
taylpfval.b ( 𝜑𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) )
taylpfval.t 𝑇 = ( 𝑁 ( 𝑆 Tayl 𝐹 ) 𝐵 )
Assertion taylply ( 𝜑 → ( 𝑇 ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ 𝑇 ) ≤ 𝑁 ) )

Proof

Step Hyp Ref Expression
1 taylpfval.s ( 𝜑𝑆 ∈ { ℝ , ℂ } )
2 taylpfval.f ( 𝜑𝐹 : 𝐴 ⟶ ℂ )
3 taylpfval.a ( 𝜑𝐴𝑆 )
4 taylpfval.n ( 𝜑𝑁 ∈ ℕ0 )
5 taylpfval.b ( 𝜑𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) )
6 taylpfval.t 𝑇 = ( 𝑁 ( 𝑆 Tayl 𝐹 ) 𝐵 )
7 cnring fld ∈ Ring
8 cnfldbas ℂ = ( Base ‘ ℂfld )
9 8 subrgid ( ℂfld ∈ Ring → ℂ ∈ ( SubRing ‘ ℂfld ) )
10 7 9 mp1i ( 𝜑 → ℂ ∈ ( SubRing ‘ ℂfld ) )
11 cnex ℂ ∈ V
12 11 a1i ( 𝜑 → ℂ ∈ V )
13 elpm2r ( ( ( ℂ ∈ V ∧ 𝑆 ∈ { ℝ , ℂ } ) ∧ ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴𝑆 ) ) → 𝐹 ∈ ( ℂ ↑pm 𝑆 ) )
14 12 1 2 3 13 syl22anc ( 𝜑𝐹 ∈ ( ℂ ↑pm 𝑆 ) )
15 dvnbss ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑁 ∈ ℕ0 ) → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ⊆ dom 𝐹 )
16 1 14 4 15 syl3anc ( 𝜑 → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ⊆ dom 𝐹 )
17 2 16 fssdmd ( 𝜑 → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ⊆ 𝐴 )
18 recnprss ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ )
19 1 18 syl ( 𝜑𝑆 ⊆ ℂ )
20 3 19 sstrd ( 𝜑𝐴 ⊆ ℂ )
21 17 20 sstrd ( 𝜑 → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ⊆ ℂ )
22 21 5 sseldd ( 𝜑𝐵 ∈ ℂ )
23 1 adantr ( ( 𝜑𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑆 ∈ { ℝ , ℂ } )
24 14 adantr ( ( 𝜑𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝐹 ∈ ( ℂ ↑pm 𝑆 ) )
25 elfznn0 ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑘 ∈ ℕ0 )
26 25 adantl ( ( 𝜑𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℕ0 )
27 dvnf ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) : dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ⟶ ℂ )
28 23 24 26 27 syl3anc ( ( 𝜑𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) : dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ⟶ ℂ )
29 simpr ( ( 𝜑𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ( 0 ... 𝑁 ) )
30 dvn2bss ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ⊆ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) )
31 23 24 29 30 syl3anc ( ( 𝜑𝑘 ∈ ( 0 ... 𝑁 ) ) → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ⊆ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) )
32 5 adantr ( ( 𝜑𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) )
33 31 32 sseldd ( ( 𝜑𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) )
34 28 33 ffvelrnd ( ( 𝜑𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) ∈ ℂ )
35 26 faccld ( ( 𝜑𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ! ‘ 𝑘 ) ∈ ℕ )
36 35 nncnd ( ( 𝜑𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ! ‘ 𝑘 ) ∈ ℂ )
37 35 nnne0d ( ( 𝜑𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ! ‘ 𝑘 ) ≠ 0 )
38 34 36 37 divcld ( ( 𝜑𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) ∈ ℂ )
39 1 2 3 4 5 6 10 22 38 taylply2 ( 𝜑 → ( 𝑇 ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ 𝑇 ) ≤ 𝑁 ) )