Step |
Hyp |
Ref |
Expression |
1 |
|
taylpfval.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
2 |
|
taylpfval.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
3 |
|
taylpfval.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑆 ) |
4 |
|
taylpfval.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
5 |
|
taylpfval.b |
⊢ ( 𝜑 → 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) |
6 |
|
taylpfval.t |
⊢ 𝑇 = ( 𝑁 ( 𝑆 Tayl 𝐹 ) 𝐵 ) |
7 |
|
cnring |
⊢ ℂfld ∈ Ring |
8 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
9 |
8
|
subrgid |
⊢ ( ℂfld ∈ Ring → ℂ ∈ ( SubRing ‘ ℂfld ) ) |
10 |
7 9
|
mp1i |
⊢ ( 𝜑 → ℂ ∈ ( SubRing ‘ ℂfld ) ) |
11 |
|
cnex |
⊢ ℂ ∈ V |
12 |
11
|
a1i |
⊢ ( 𝜑 → ℂ ∈ V ) |
13 |
|
elpm2r |
⊢ ( ( ( ℂ ∈ V ∧ 𝑆 ∈ { ℝ , ℂ } ) ∧ ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ) → 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) |
14 |
12 1 2 3 13
|
syl22anc |
⊢ ( 𝜑 → 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) |
15 |
|
dvnbss |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑁 ∈ ℕ0 ) → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ⊆ dom 𝐹 ) |
16 |
1 14 4 15
|
syl3anc |
⊢ ( 𝜑 → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ⊆ dom 𝐹 ) |
17 |
2 16
|
fssdmd |
⊢ ( 𝜑 → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ⊆ 𝐴 ) |
18 |
|
recnprss |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) |
19 |
1 18
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
20 |
3 19
|
sstrd |
⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
21 |
17 20
|
sstrd |
⊢ ( 𝜑 → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ⊆ ℂ ) |
22 |
21 5
|
sseldd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
23 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑆 ∈ { ℝ , ℂ } ) |
24 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) |
25 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑘 ∈ ℕ0 ) |
26 |
25
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℕ0 ) |
27 |
|
dvnf |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) : dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ⟶ ℂ ) |
28 |
23 24 26 27
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) : dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ⟶ ℂ ) |
29 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ( 0 ... 𝑁 ) ) |
30 |
|
dvn2bss |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ⊆ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ) |
31 |
23 24 29 30
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ⊆ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ) |
32 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) |
33 |
31 32
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ) |
34 |
28 33
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) ∈ ℂ ) |
35 |
26
|
faccld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ! ‘ 𝑘 ) ∈ ℕ ) |
36 |
35
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ! ‘ 𝑘 ) ∈ ℂ ) |
37 |
35
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ! ‘ 𝑘 ) ≠ 0 ) |
38 |
34 36 37
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) ∈ ℂ ) |
39 |
1 2 3 4 5 6 10 22 38
|
taylply2 |
⊢ ( 𝜑 → ( 𝑇 ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ 𝑇 ) ≤ 𝑁 ) ) |