Step |
Hyp |
Ref |
Expression |
1 |
|
taylpfval.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
2 |
|
taylpfval.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
3 |
|
taylpfval.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑆 ) |
4 |
|
taylpfval.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
5 |
|
taylpfval.b |
⊢ ( 𝜑 → 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) |
6 |
|
taylpfval.t |
⊢ 𝑇 = ( 𝑁 ( 𝑆 Tayl 𝐹 ) 𝐵 ) |
7 |
|
taylply2.1 |
⊢ ( 𝜑 → 𝐷 ∈ ( SubRing ‘ ℂfld ) ) |
8 |
|
taylply2.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) |
9 |
|
taylply2.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) ∈ 𝐷 ) |
10 |
1 2 3 4 5 6
|
taylpfval |
⊢ ( 𝜑 → 𝑇 = ( 𝑥 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝐵 ) ↑ 𝑘 ) ) ) ) |
11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝑥 ∈ ℂ ) |
12 |
|
cnex |
⊢ ℂ ∈ V |
13 |
12
|
a1i |
⊢ ( 𝜑 → ℂ ∈ V ) |
14 |
|
elpm2r |
⊢ ( ( ( ℂ ∈ V ∧ 𝑆 ∈ { ℝ , ℂ } ) ∧ ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ) → 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) |
15 |
13 1 2 3 14
|
syl22anc |
⊢ ( 𝜑 → 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) |
16 |
|
dvnbss |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑁 ∈ ℕ0 ) → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ⊆ dom 𝐹 ) |
17 |
1 15 4 16
|
syl3anc |
⊢ ( 𝜑 → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ⊆ dom 𝐹 ) |
18 |
2 17
|
fssdmd |
⊢ ( 𝜑 → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ⊆ 𝐴 ) |
19 |
|
recnprss |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) |
20 |
1 19
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
21 |
3 20
|
sstrd |
⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
22 |
18 21
|
sstrd |
⊢ ( 𝜑 → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ⊆ ℂ ) |
23 |
22 5
|
sseldd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝐵 ∈ ℂ ) |
25 |
11 24
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( 𝑥 − 𝐵 ) ∈ ℂ ) |
26 |
|
df-idp |
⊢ Xp = ( I ↾ ℂ ) |
27 |
|
mptresid |
⊢ ( I ↾ ℂ ) = ( 𝑥 ∈ ℂ ↦ 𝑥 ) |
28 |
26 27
|
eqtri |
⊢ Xp = ( 𝑥 ∈ ℂ ↦ 𝑥 ) |
29 |
28
|
a1i |
⊢ ( 𝜑 → Xp = ( 𝑥 ∈ ℂ ↦ 𝑥 ) ) |
30 |
|
fconstmpt |
⊢ ( ℂ × { 𝐵 } ) = ( 𝑥 ∈ ℂ ↦ 𝐵 ) |
31 |
30
|
a1i |
⊢ ( 𝜑 → ( ℂ × { 𝐵 } ) = ( 𝑥 ∈ ℂ ↦ 𝐵 ) ) |
32 |
13 11 24 29 31
|
offval2 |
⊢ ( 𝜑 → ( Xp ∘f − ( ℂ × { 𝐵 } ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 − 𝐵 ) ) ) |
33 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑦 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) = ( 𝑦 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) |
34 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝑥 − 𝐵 ) → ( 𝑦 ↑ 𝑘 ) = ( ( 𝑥 − 𝐵 ) ↑ 𝑘 ) ) |
35 |
34
|
oveq2d |
⊢ ( 𝑦 = ( 𝑥 − 𝐵 ) → ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) = ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝐵 ) ↑ 𝑘 ) ) ) |
36 |
35
|
sumeq2sdv |
⊢ ( 𝑦 = ( 𝑥 − 𝐵 ) → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝐵 ) ↑ 𝑘 ) ) ) |
37 |
25 32 33 36
|
fmptco |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ∘ ( Xp ∘f − ( ℂ × { 𝐵 } ) ) ) = ( 𝑥 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝐵 ) ↑ 𝑘 ) ) ) ) |
38 |
10 37
|
eqtr4d |
⊢ ( 𝜑 → 𝑇 = ( ( 𝑦 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ∘ ( Xp ∘f − ( ℂ × { 𝐵 } ) ) ) ) |
39 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
40 |
39
|
subrgss |
⊢ ( 𝐷 ∈ ( SubRing ‘ ℂfld ) → 𝐷 ⊆ ℂ ) |
41 |
7 40
|
syl |
⊢ ( 𝜑 → 𝐷 ⊆ ℂ ) |
42 |
41 4 9
|
elplyd |
⊢ ( 𝜑 → ( 𝑦 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ∈ ( Poly ‘ 𝐷 ) ) |
43 |
|
cnfld1 |
⊢ 1 = ( 1r ‘ ℂfld ) |
44 |
43
|
subrg1cl |
⊢ ( 𝐷 ∈ ( SubRing ‘ ℂfld ) → 1 ∈ 𝐷 ) |
45 |
7 44
|
syl |
⊢ ( 𝜑 → 1 ∈ 𝐷 ) |
46 |
|
plyid |
⊢ ( ( 𝐷 ⊆ ℂ ∧ 1 ∈ 𝐷 ) → Xp ∈ ( Poly ‘ 𝐷 ) ) |
47 |
41 45 46
|
syl2anc |
⊢ ( 𝜑 → Xp ∈ ( Poly ‘ 𝐷 ) ) |
48 |
|
plyconst |
⊢ ( ( 𝐷 ⊆ ℂ ∧ 𝐵 ∈ 𝐷 ) → ( ℂ × { 𝐵 } ) ∈ ( Poly ‘ 𝐷 ) ) |
49 |
41 8 48
|
syl2anc |
⊢ ( 𝜑 → ( ℂ × { 𝐵 } ) ∈ ( Poly ‘ 𝐷 ) ) |
50 |
|
subrgsubg |
⊢ ( 𝐷 ∈ ( SubRing ‘ ℂfld ) → 𝐷 ∈ ( SubGrp ‘ ℂfld ) ) |
51 |
7 50
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ( SubGrp ‘ ℂfld ) ) |
52 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
53 |
52
|
subgcl |
⊢ ( ( 𝐷 ∈ ( SubGrp ‘ ℂfld ) ∧ 𝑢 ∈ 𝐷 ∧ 𝑣 ∈ 𝐷 ) → ( 𝑢 + 𝑣 ) ∈ 𝐷 ) |
54 |
53
|
3expb |
⊢ ( ( 𝐷 ∈ ( SubGrp ‘ ℂfld ) ∧ ( 𝑢 ∈ 𝐷 ∧ 𝑣 ∈ 𝐷 ) ) → ( 𝑢 + 𝑣 ) ∈ 𝐷 ) |
55 |
51 54
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐷 ∧ 𝑣 ∈ 𝐷 ) ) → ( 𝑢 + 𝑣 ) ∈ 𝐷 ) |
56 |
40
|
sseld |
⊢ ( 𝐷 ∈ ( SubRing ‘ ℂfld ) → ( 𝑢 ∈ 𝐷 → 𝑢 ∈ ℂ ) ) |
57 |
56
|
a1dd |
⊢ ( 𝐷 ∈ ( SubRing ‘ ℂfld ) → ( 𝑢 ∈ 𝐷 → ( 𝑣 ∈ 𝐷 → 𝑢 ∈ ℂ ) ) ) |
58 |
57
|
3imp |
⊢ ( ( 𝐷 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑢 ∈ 𝐷 ∧ 𝑣 ∈ 𝐷 ) → 𝑢 ∈ ℂ ) |
59 |
40
|
sseld |
⊢ ( 𝐷 ∈ ( SubRing ‘ ℂfld ) → ( 𝑣 ∈ 𝐷 → 𝑣 ∈ ℂ ) ) |
60 |
59
|
a1d |
⊢ ( 𝐷 ∈ ( SubRing ‘ ℂfld ) → ( 𝑢 ∈ 𝐷 → ( 𝑣 ∈ 𝐷 → 𝑣 ∈ ℂ ) ) ) |
61 |
60
|
3imp |
⊢ ( ( 𝐷 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑢 ∈ 𝐷 ∧ 𝑣 ∈ 𝐷 ) → 𝑣 ∈ ℂ ) |
62 |
|
ovmpot |
⊢ ( ( 𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ ) → ( 𝑢 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑣 ) = ( 𝑢 · 𝑣 ) ) |
63 |
58 61 62
|
syl2anc |
⊢ ( ( 𝐷 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑢 ∈ 𝐷 ∧ 𝑣 ∈ 𝐷 ) → ( 𝑢 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑣 ) = ( 𝑢 · 𝑣 ) ) |
64 |
|
mpocnfldmul |
⊢ ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) = ( .r ‘ ℂfld ) |
65 |
64
|
subrgmcl |
⊢ ( ( 𝐷 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑢 ∈ 𝐷 ∧ 𝑣 ∈ 𝐷 ) → ( 𝑢 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑣 ) ∈ 𝐷 ) |
66 |
63 65
|
eqeltrrd |
⊢ ( ( 𝐷 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑢 ∈ 𝐷 ∧ 𝑣 ∈ 𝐷 ) → ( 𝑢 · 𝑣 ) ∈ 𝐷 ) |
67 |
66
|
3expb |
⊢ ( ( 𝐷 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑢 ∈ 𝐷 ∧ 𝑣 ∈ 𝐷 ) ) → ( 𝑢 · 𝑣 ) ∈ 𝐷 ) |
68 |
7 67
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐷 ∧ 𝑣 ∈ 𝐷 ) ) → ( 𝑢 · 𝑣 ) ∈ 𝐷 ) |
69 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
70 |
|
cnfldneg |
⊢ ( 1 ∈ ℂ → ( ( invg ‘ ℂfld ) ‘ 1 ) = - 1 ) |
71 |
69 70
|
ax-mp |
⊢ ( ( invg ‘ ℂfld ) ‘ 1 ) = - 1 |
72 |
|
eqid |
⊢ ( invg ‘ ℂfld ) = ( invg ‘ ℂfld ) |
73 |
72
|
subginvcl |
⊢ ( ( 𝐷 ∈ ( SubGrp ‘ ℂfld ) ∧ 1 ∈ 𝐷 ) → ( ( invg ‘ ℂfld ) ‘ 1 ) ∈ 𝐷 ) |
74 |
51 45 73
|
syl2anc |
⊢ ( 𝜑 → ( ( invg ‘ ℂfld ) ‘ 1 ) ∈ 𝐷 ) |
75 |
71 74
|
eqeltrrid |
⊢ ( 𝜑 → - 1 ∈ 𝐷 ) |
76 |
47 49 55 68 75
|
plysub |
⊢ ( 𝜑 → ( Xp ∘f − ( ℂ × { 𝐵 } ) ) ∈ ( Poly ‘ 𝐷 ) ) |
77 |
42 76 55 68
|
plyco |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ∘ ( Xp ∘f − ( ℂ × { 𝐵 } ) ) ) ∈ ( Poly ‘ 𝐷 ) ) |
78 |
38 77
|
eqeltrd |
⊢ ( 𝜑 → 𝑇 ∈ ( Poly ‘ 𝐷 ) ) |
79 |
38
|
fveq2d |
⊢ ( 𝜑 → ( deg ‘ 𝑇 ) = ( deg ‘ ( ( 𝑦 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ∘ ( Xp ∘f − ( ℂ × { 𝐵 } ) ) ) ) ) |
80 |
|
eqid |
⊢ ( deg ‘ ( 𝑦 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) = ( deg ‘ ( 𝑦 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) |
81 |
|
eqid |
⊢ ( deg ‘ ( Xp ∘f − ( ℂ × { 𝐵 } ) ) ) = ( deg ‘ ( Xp ∘f − ( ℂ × { 𝐵 } ) ) ) |
82 |
80 81 42 76
|
dgrco |
⊢ ( 𝜑 → ( deg ‘ ( ( 𝑦 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ∘ ( Xp ∘f − ( ℂ × { 𝐵 } ) ) ) ) = ( ( deg ‘ ( 𝑦 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) · ( deg ‘ ( Xp ∘f − ( ℂ × { 𝐵 } ) ) ) ) ) |
83 |
|
eqid |
⊢ ( Xp ∘f − ( ℂ × { 𝐵 } ) ) = ( Xp ∘f − ( ℂ × { 𝐵 } ) ) |
84 |
83
|
plyremlem |
⊢ ( 𝐵 ∈ ℂ → ( ( Xp ∘f − ( ℂ × { 𝐵 } ) ) ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ ( Xp ∘f − ( ℂ × { 𝐵 } ) ) ) = 1 ∧ ( ◡ ( Xp ∘f − ( ℂ × { 𝐵 } ) ) “ { 0 } ) = { 𝐵 } ) ) |
85 |
23 84
|
syl |
⊢ ( 𝜑 → ( ( Xp ∘f − ( ℂ × { 𝐵 } ) ) ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ ( Xp ∘f − ( ℂ × { 𝐵 } ) ) ) = 1 ∧ ( ◡ ( Xp ∘f − ( ℂ × { 𝐵 } ) ) “ { 0 } ) = { 𝐵 } ) ) |
86 |
85
|
simp2d |
⊢ ( 𝜑 → ( deg ‘ ( Xp ∘f − ( ℂ × { 𝐵 } ) ) ) = 1 ) |
87 |
86
|
oveq2d |
⊢ ( 𝜑 → ( ( deg ‘ ( 𝑦 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) · ( deg ‘ ( Xp ∘f − ( ℂ × { 𝐵 } ) ) ) ) = ( ( deg ‘ ( 𝑦 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) · 1 ) ) |
88 |
|
dgrcl |
⊢ ( ( 𝑦 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ∈ ( Poly ‘ 𝐷 ) → ( deg ‘ ( 𝑦 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ∈ ℕ0 ) |
89 |
42 88
|
syl |
⊢ ( 𝜑 → ( deg ‘ ( 𝑦 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ∈ ℕ0 ) |
90 |
89
|
nn0cnd |
⊢ ( 𝜑 → ( deg ‘ ( 𝑦 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ∈ ℂ ) |
91 |
90
|
mulridd |
⊢ ( 𝜑 → ( ( deg ‘ ( 𝑦 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) · 1 ) = ( deg ‘ ( 𝑦 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ) |
92 |
87 91
|
eqtrd |
⊢ ( 𝜑 → ( ( deg ‘ ( 𝑦 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) · ( deg ‘ ( Xp ∘f − ( ℂ × { 𝐵 } ) ) ) ) = ( deg ‘ ( 𝑦 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ) |
93 |
79 82 92
|
3eqtrd |
⊢ ( 𝜑 → ( deg ‘ 𝑇 ) = ( deg ‘ ( 𝑦 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ) |
94 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑘 ∈ ℕ0 ) |
95 |
|
dvnf |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) : dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ⟶ ℂ ) |
96 |
1 15 94 95
|
syl2an3an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) : dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ⟶ ℂ ) |
97 |
|
id |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑘 ∈ ( 0 ... 𝑁 ) ) |
98 |
|
dvn2bss |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ⊆ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ) |
99 |
1 15 97 98
|
syl2an3an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ⊆ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ) |
100 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) |
101 |
99 100
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ) |
102 |
96 101
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) ∈ ℂ ) |
103 |
94
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℕ0 ) |
104 |
103
|
faccld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ! ‘ 𝑘 ) ∈ ℕ ) |
105 |
104
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ! ‘ 𝑘 ) ∈ ℂ ) |
106 |
104
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ! ‘ 𝑘 ) ≠ 0 ) |
107 |
102 105 106
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) ∈ ℂ ) |
108 |
42 4 107 33
|
dgrle |
⊢ ( 𝜑 → ( deg ‘ ( 𝑦 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ≤ 𝑁 ) |
109 |
93 108
|
eqbrtrd |
⊢ ( 𝜑 → ( deg ‘ 𝑇 ) ≤ 𝑁 ) |
110 |
78 109
|
jca |
⊢ ( 𝜑 → ( 𝑇 ∈ ( Poly ‘ 𝐷 ) ∧ ( deg ‘ 𝑇 ) ≤ 𝑁 ) ) |