| Step |
Hyp |
Ref |
Expression |
| 1 |
|
taylthlem1.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
| 2 |
|
taylthlem1.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
| 3 |
|
taylthlem1.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑆 ) |
| 4 |
|
taylthlem1.d |
⊢ ( 𝜑 → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) = 𝐴 ) |
| 5 |
|
taylthlem1.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 6 |
|
taylthlem1.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) |
| 7 |
|
taylthlem1.t |
⊢ 𝑇 = ( 𝑁 ( 𝑆 Tayl 𝐹 ) 𝐵 ) |
| 8 |
|
taylthlem1.r |
⊢ 𝑅 = ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝑇 ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 𝑁 ) ) ) |
| 9 |
|
taylthlem1.i |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ..^ 𝑁 ) ∧ 0 ∈ ( ( 𝑦 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑛 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑛 ) ) ‘ 𝑦 ) ) / ( ( 𝑦 − 𝐵 ) ↑ 𝑛 ) ) ) limℂ 𝐵 ) ) ) → 0 ∈ ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − ( 𝑛 + 1 ) ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − ( 𝑛 + 1 ) ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ ( 𝑛 + 1 ) ) ) ) limℂ 𝐵 ) ) |
| 10 |
|
elfz1end |
⊢ ( 𝑁 ∈ ℕ ↔ 𝑁 ∈ ( 1 ... 𝑁 ) ) |
| 11 |
5 10
|
sylib |
⊢ ( 𝜑 → 𝑁 ∈ ( 1 ... 𝑁 ) ) |
| 12 |
|
oveq2 |
⊢ ( 𝑚 = 1 → ( 𝑁 − 𝑚 ) = ( 𝑁 − 1 ) ) |
| 13 |
12
|
fveq2d |
⊢ ( 𝑚 = 1 → ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑚 ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) |
| 14 |
13
|
fveq1d |
⊢ ( 𝑚 = 1 → ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) = ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) ) |
| 15 |
12
|
fveq2d |
⊢ ( 𝑚 = 1 → ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑚 ) ) = ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ) |
| 16 |
15
|
fveq1d |
⊢ ( 𝑚 = 1 → ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) = ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) ) |
| 17 |
14 16
|
oveq12d |
⊢ ( 𝑚 = 1 → ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) ) = ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) ) ) |
| 18 |
|
oveq2 |
⊢ ( 𝑚 = 1 → ( ( 𝑥 − 𝐵 ) ↑ 𝑚 ) = ( ( 𝑥 − 𝐵 ) ↑ 1 ) ) |
| 19 |
17 18
|
oveq12d |
⊢ ( 𝑚 = 1 → ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 𝑚 ) ) = ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 1 ) ) ) |
| 20 |
19
|
mpteq2dv |
⊢ ( 𝑚 = 1 → ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 𝑚 ) ) ) = ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 1 ) ) ) ) |
| 21 |
20
|
oveq1d |
⊢ ( 𝑚 = 1 → ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 𝑚 ) ) ) limℂ 𝐵 ) = ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 1 ) ) ) limℂ 𝐵 ) ) |
| 22 |
21
|
eleq2d |
⊢ ( 𝑚 = 1 → ( 0 ∈ ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 𝑚 ) ) ) limℂ 𝐵 ) ↔ 0 ∈ ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 1 ) ) ) limℂ 𝐵 ) ) ) |
| 23 |
22
|
imbi2d |
⊢ ( 𝑚 = 1 → ( ( 𝜑 → 0 ∈ ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 𝑚 ) ) ) limℂ 𝐵 ) ) ↔ ( 𝜑 → 0 ∈ ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 1 ) ) ) limℂ 𝐵 ) ) ) ) |
| 24 |
|
oveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝑁 − 𝑚 ) = ( 𝑁 − 𝑛 ) ) |
| 25 |
24
|
fveq2d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑚 ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑛 ) ) ) |
| 26 |
25
|
fveq1d |
⊢ ( 𝑚 = 𝑛 → ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) = ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑛 ) ) ‘ 𝑥 ) ) |
| 27 |
24
|
fveq2d |
⊢ ( 𝑚 = 𝑛 → ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑚 ) ) = ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑛 ) ) ) |
| 28 |
27
|
fveq1d |
⊢ ( 𝑚 = 𝑛 → ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) = ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑛 ) ) ‘ 𝑥 ) ) |
| 29 |
26 28
|
oveq12d |
⊢ ( 𝑚 = 𝑛 → ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) ) = ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑛 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑛 ) ) ‘ 𝑥 ) ) ) |
| 30 |
|
oveq2 |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑥 − 𝐵 ) ↑ 𝑚 ) = ( ( 𝑥 − 𝐵 ) ↑ 𝑛 ) ) |
| 31 |
29 30
|
oveq12d |
⊢ ( 𝑚 = 𝑛 → ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 𝑚 ) ) = ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑛 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑛 ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 𝑛 ) ) ) |
| 32 |
31
|
mpteq2dv |
⊢ ( 𝑚 = 𝑛 → ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 𝑚 ) ) ) = ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑛 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑛 ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 𝑛 ) ) ) ) |
| 33 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑛 ) ) ‘ 𝑥 ) = ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑛 ) ) ‘ 𝑦 ) ) |
| 34 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑛 ) ) ‘ 𝑥 ) = ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑛 ) ) ‘ 𝑦 ) ) |
| 35 |
33 34
|
oveq12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑛 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑛 ) ) ‘ 𝑥 ) ) = ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑛 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑛 ) ) ‘ 𝑦 ) ) ) |
| 36 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 − 𝐵 ) = ( 𝑦 − 𝐵 ) ) |
| 37 |
36
|
oveq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 − 𝐵 ) ↑ 𝑛 ) = ( ( 𝑦 − 𝐵 ) ↑ 𝑛 ) ) |
| 38 |
35 37
|
oveq12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑛 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑛 ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 𝑛 ) ) = ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑛 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑛 ) ) ‘ 𝑦 ) ) / ( ( 𝑦 − 𝐵 ) ↑ 𝑛 ) ) ) |
| 39 |
38
|
cbvmptv |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑛 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑛 ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 𝑛 ) ) ) = ( 𝑦 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑛 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑛 ) ) ‘ 𝑦 ) ) / ( ( 𝑦 − 𝐵 ) ↑ 𝑛 ) ) ) |
| 40 |
32 39
|
eqtrdi |
⊢ ( 𝑚 = 𝑛 → ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 𝑚 ) ) ) = ( 𝑦 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑛 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑛 ) ) ‘ 𝑦 ) ) / ( ( 𝑦 − 𝐵 ) ↑ 𝑛 ) ) ) ) |
| 41 |
40
|
oveq1d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 𝑚 ) ) ) limℂ 𝐵 ) = ( ( 𝑦 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑛 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑛 ) ) ‘ 𝑦 ) ) / ( ( 𝑦 − 𝐵 ) ↑ 𝑛 ) ) ) limℂ 𝐵 ) ) |
| 42 |
41
|
eleq2d |
⊢ ( 𝑚 = 𝑛 → ( 0 ∈ ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 𝑚 ) ) ) limℂ 𝐵 ) ↔ 0 ∈ ( ( 𝑦 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑛 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑛 ) ) ‘ 𝑦 ) ) / ( ( 𝑦 − 𝐵 ) ↑ 𝑛 ) ) ) limℂ 𝐵 ) ) ) |
| 43 |
42
|
imbi2d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝜑 → 0 ∈ ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 𝑚 ) ) ) limℂ 𝐵 ) ) ↔ ( 𝜑 → 0 ∈ ( ( 𝑦 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑛 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑛 ) ) ‘ 𝑦 ) ) / ( ( 𝑦 − 𝐵 ) ↑ 𝑛 ) ) ) limℂ 𝐵 ) ) ) ) |
| 44 |
|
oveq2 |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 𝑁 − 𝑚 ) = ( 𝑁 − ( 𝑛 + 1 ) ) ) |
| 45 |
44
|
fveq2d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑚 ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − ( 𝑛 + 1 ) ) ) ) |
| 46 |
45
|
fveq1d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) = ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − ( 𝑛 + 1 ) ) ) ‘ 𝑥 ) ) |
| 47 |
44
|
fveq2d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑚 ) ) = ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − ( 𝑛 + 1 ) ) ) ) |
| 48 |
47
|
fveq1d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) = ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − ( 𝑛 + 1 ) ) ) ‘ 𝑥 ) ) |
| 49 |
46 48
|
oveq12d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) ) = ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − ( 𝑛 + 1 ) ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − ( 𝑛 + 1 ) ) ) ‘ 𝑥 ) ) ) |
| 50 |
|
oveq2 |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝑥 − 𝐵 ) ↑ 𝑚 ) = ( ( 𝑥 − 𝐵 ) ↑ ( 𝑛 + 1 ) ) ) |
| 51 |
49 50
|
oveq12d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 𝑚 ) ) = ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − ( 𝑛 + 1 ) ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − ( 𝑛 + 1 ) ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ ( 𝑛 + 1 ) ) ) ) |
| 52 |
51
|
mpteq2dv |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 𝑚 ) ) ) = ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − ( 𝑛 + 1 ) ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − ( 𝑛 + 1 ) ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ ( 𝑛 + 1 ) ) ) ) ) |
| 53 |
52
|
oveq1d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 𝑚 ) ) ) limℂ 𝐵 ) = ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − ( 𝑛 + 1 ) ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − ( 𝑛 + 1 ) ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ ( 𝑛 + 1 ) ) ) ) limℂ 𝐵 ) ) |
| 54 |
53
|
eleq2d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 0 ∈ ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 𝑚 ) ) ) limℂ 𝐵 ) ↔ 0 ∈ ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − ( 𝑛 + 1 ) ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − ( 𝑛 + 1 ) ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ ( 𝑛 + 1 ) ) ) ) limℂ 𝐵 ) ) ) |
| 55 |
54
|
imbi2d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝜑 → 0 ∈ ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 𝑚 ) ) ) limℂ 𝐵 ) ) ↔ ( 𝜑 → 0 ∈ ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − ( 𝑛 + 1 ) ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − ( 𝑛 + 1 ) ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ ( 𝑛 + 1 ) ) ) ) limℂ 𝐵 ) ) ) ) |
| 56 |
|
oveq2 |
⊢ ( 𝑚 = 𝑁 → ( 𝑁 − 𝑚 ) = ( 𝑁 − 𝑁 ) ) |
| 57 |
56
|
fveq2d |
⊢ ( 𝑚 = 𝑁 → ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑚 ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑁 ) ) ) |
| 58 |
57
|
fveq1d |
⊢ ( 𝑚 = 𝑁 → ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) = ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑁 ) ) ‘ 𝑥 ) ) |
| 59 |
56
|
fveq2d |
⊢ ( 𝑚 = 𝑁 → ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑚 ) ) = ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑁 ) ) ) |
| 60 |
59
|
fveq1d |
⊢ ( 𝑚 = 𝑁 → ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) = ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑁 ) ) ‘ 𝑥 ) ) |
| 61 |
58 60
|
oveq12d |
⊢ ( 𝑚 = 𝑁 → ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) ) = ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑁 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑁 ) ) ‘ 𝑥 ) ) ) |
| 62 |
|
oveq2 |
⊢ ( 𝑚 = 𝑁 → ( ( 𝑥 − 𝐵 ) ↑ 𝑚 ) = ( ( 𝑥 − 𝐵 ) ↑ 𝑁 ) ) |
| 63 |
61 62
|
oveq12d |
⊢ ( 𝑚 = 𝑁 → ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 𝑚 ) ) = ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑁 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑁 ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 𝑁 ) ) ) |
| 64 |
63
|
mpteq2dv |
⊢ ( 𝑚 = 𝑁 → ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 𝑚 ) ) ) = ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑁 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑁 ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 𝑁 ) ) ) ) |
| 65 |
64
|
oveq1d |
⊢ ( 𝑚 = 𝑁 → ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 𝑚 ) ) ) limℂ 𝐵 ) = ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑁 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑁 ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 𝑁 ) ) ) limℂ 𝐵 ) ) |
| 66 |
65
|
eleq2d |
⊢ ( 𝑚 = 𝑁 → ( 0 ∈ ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 𝑚 ) ) ) limℂ 𝐵 ) ↔ 0 ∈ ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑁 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑁 ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 𝑁 ) ) ) limℂ 𝐵 ) ) ) |
| 67 |
66
|
imbi2d |
⊢ ( 𝑚 = 𝑁 → ( ( 𝜑 → 0 ∈ ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑚 ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 𝑚 ) ) ) limℂ 𝐵 ) ) ↔ ( 𝜑 → 0 ∈ ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑁 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑁 ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 𝑁 ) ) ) limℂ 𝐵 ) ) ) ) |
| 68 |
|
fveq2 |
⊢ ( 𝑦 = 𝐵 → ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ‘ 𝑦 ) = ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ‘ 𝐵 ) ) |
| 69 |
|
fveq2 |
⊢ ( 𝑦 = 𝐵 → ( ( ( ℂ D𝑛 𝑇 ) ‘ 𝑁 ) ‘ 𝑦 ) = ( ( ( ℂ D𝑛 𝑇 ) ‘ 𝑁 ) ‘ 𝐵 ) ) |
| 70 |
68 69
|
oveq12d |
⊢ ( 𝑦 = 𝐵 → ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ 𝑁 ) ‘ 𝑦 ) ) = ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ‘ 𝐵 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ 𝑁 ) ‘ 𝐵 ) ) ) |
| 71 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ 𝑁 ) ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ 𝑁 ) ‘ 𝑦 ) ) ) |
| 72 |
|
ovex |
⊢ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ‘ 𝐵 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ 𝑁 ) ‘ 𝐵 ) ) ∈ V |
| 73 |
70 71 72
|
fvmpt |
⊢ ( 𝐵 ∈ 𝐴 → ( ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ 𝑁 ) ‘ 𝑦 ) ) ) ‘ 𝐵 ) = ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ‘ 𝐵 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ 𝑁 ) ‘ 𝐵 ) ) ) |
| 74 |
6 73
|
syl |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ 𝑁 ) ‘ 𝑦 ) ) ) ‘ 𝐵 ) = ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ‘ 𝐵 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ 𝑁 ) ‘ 𝐵 ) ) ) |
| 75 |
5
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 76 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 77 |
75 76
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
| 78 |
|
eluzfz2b |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) ↔ 𝑁 ∈ ( 0 ... 𝑁 ) ) |
| 79 |
77 78
|
sylib |
⊢ ( 𝜑 → 𝑁 ∈ ( 0 ... 𝑁 ) ) |
| 80 |
6 4
|
eleqtrrd |
⊢ ( 𝜑 → 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) |
| 81 |
1 2 3 79 80 7
|
dvntaylp0 |
⊢ ( 𝜑 → ( ( ( ℂ D𝑛 𝑇 ) ‘ 𝑁 ) ‘ 𝐵 ) = ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ‘ 𝐵 ) ) |
| 82 |
81
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ‘ 𝐵 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ 𝑁 ) ‘ 𝐵 ) ) = ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ‘ 𝐵 ) − ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ‘ 𝐵 ) ) ) |
| 83 |
|
cnex |
⊢ ℂ ∈ V |
| 84 |
83
|
a1i |
⊢ ( 𝜑 → ℂ ∈ V ) |
| 85 |
|
elpm2r |
⊢ ( ( ( ℂ ∈ V ∧ 𝑆 ∈ { ℝ , ℂ } ) ∧ ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ) → 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) |
| 86 |
84 1 2 3 85
|
syl22anc |
⊢ ( 𝜑 → 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) |
| 87 |
|
dvnf |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) : dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ⟶ ℂ ) |
| 88 |
1 86 75 87
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) : dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ⟶ ℂ ) |
| 89 |
88 80
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ‘ 𝐵 ) ∈ ℂ ) |
| 90 |
89
|
subidd |
⊢ ( 𝜑 → ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ‘ 𝐵 ) − ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ‘ 𝐵 ) ) = 0 ) |
| 91 |
74 82 90
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ 𝑁 ) ‘ 𝑦 ) ) ) ‘ 𝐵 ) = 0 ) |
| 92 |
|
funmpt |
⊢ Fun ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ 𝑁 ) ‘ 𝑦 ) ) ) |
| 93 |
|
ovex |
⊢ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ 𝑁 ) ‘ 𝑦 ) ) ∈ V |
| 94 |
93 71
|
dmmpti |
⊢ dom ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ 𝑁 ) ‘ 𝑦 ) ) ) = 𝐴 |
| 95 |
6 94
|
eleqtrrdi |
⊢ ( 𝜑 → 𝐵 ∈ dom ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ 𝑁 ) ‘ 𝑦 ) ) ) ) |
| 96 |
|
funbrfvb |
⊢ ( ( Fun ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ 𝑁 ) ‘ 𝑦 ) ) ) ∧ 𝐵 ∈ dom ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ 𝑁 ) ‘ 𝑦 ) ) ) ) → ( ( ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ 𝑁 ) ‘ 𝑦 ) ) ) ‘ 𝐵 ) = 0 ↔ 𝐵 ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ 𝑁 ) ‘ 𝑦 ) ) ) 0 ) ) |
| 97 |
92 95 96
|
sylancr |
⊢ ( 𝜑 → ( ( ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ 𝑁 ) ‘ 𝑦 ) ) ) ‘ 𝐵 ) = 0 ↔ 𝐵 ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ 𝑁 ) ‘ 𝑦 ) ) ) 0 ) ) |
| 98 |
91 97
|
mpbid |
⊢ ( 𝜑 → 𝐵 ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ 𝑁 ) ‘ 𝑦 ) ) ) 0 ) |
| 99 |
|
nnm1nn0 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) |
| 100 |
5 99
|
syl |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℕ0 ) |
| 101 |
|
dvnf |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( 𝑁 − 1 ) ∈ ℕ0 ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) : dom ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ⟶ ℂ ) |
| 102 |
1 86 100 101
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) : dom ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ⟶ ℂ ) |
| 103 |
|
dvnbss |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( 𝑁 − 1 ) ∈ ℕ0 ) → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ⊆ dom 𝐹 ) |
| 104 |
1 86 100 103
|
syl3anc |
⊢ ( 𝜑 → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ⊆ dom 𝐹 ) |
| 105 |
2 104
|
fssdmd |
⊢ ( 𝜑 → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ⊆ 𝐴 ) |
| 106 |
|
fzo0end |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ( 0 ..^ 𝑁 ) ) |
| 107 |
|
elfzofz |
⊢ ( ( 𝑁 − 1 ) ∈ ( 0 ..^ 𝑁 ) → ( 𝑁 − 1 ) ∈ ( 0 ... 𝑁 ) ) |
| 108 |
5 106 107
|
3syl |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ( 0 ... 𝑁 ) ) |
| 109 |
|
dvn2bss |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( 𝑁 − 1 ) ∈ ( 0 ... 𝑁 ) ) → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ⊆ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) |
| 110 |
1 86 108 109
|
syl3anc |
⊢ ( 𝜑 → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ⊆ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) |
| 111 |
4 110
|
eqsstrrd |
⊢ ( 𝜑 → 𝐴 ⊆ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) |
| 112 |
105 111
|
eqssd |
⊢ ( 𝜑 → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) = 𝐴 ) |
| 113 |
112
|
feq2d |
⊢ ( 𝜑 → ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) : dom ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ⟶ ℂ ↔ ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) : 𝐴 ⟶ ℂ ) ) |
| 114 |
102 113
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) : 𝐴 ⟶ ℂ ) |
| 115 |
114
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ∈ ℂ ) |
| 116 |
4
|
feq2d |
⊢ ( 𝜑 → ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) : dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ⟶ ℂ ↔ ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) : 𝐴 ⟶ ℂ ) ) |
| 117 |
88 116
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) : 𝐴 ⟶ ℂ ) |
| 118 |
117
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ‘ 𝑦 ) ∈ ℂ ) |
| 119 |
5
|
nncnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 120 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 121 |
119 120
|
npcand |
⊢ ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
| 122 |
121
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 𝐹 ) ‘ ( ( 𝑁 − 1 ) + 1 ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) |
| 123 |
|
recnprss |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) |
| 124 |
1 123
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 125 |
|
dvnp1 |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( 𝑁 − 1 ) ∈ ℕ0 ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ ( ( 𝑁 − 1 ) + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) ) |
| 126 |
124 86 100 125
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 𝐹 ) ‘ ( ( 𝑁 − 1 ) + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) ) |
| 127 |
122 126
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) = ( 𝑆 D ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) ) |
| 128 |
117
|
feqmptd |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) = ( 𝑦 ∈ 𝐴 ↦ ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ‘ 𝑦 ) ) ) |
| 129 |
114
|
feqmptd |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) = ( 𝑦 ∈ 𝐴 ↦ ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ) ) |
| 130 |
129
|
oveq2d |
⊢ ( 𝜑 → ( 𝑆 D ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) = ( 𝑆 D ( 𝑦 ∈ 𝐴 ↦ ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ) ) ) |
| 131 |
127 128 130
|
3eqtr3rd |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑦 ∈ 𝐴 ↦ ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝐴 ↦ ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ‘ 𝑦 ) ) ) |
| 132 |
3 124
|
sstrd |
⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
| 133 |
132
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℂ ) |
| 134 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 135 |
134
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ0 ) |
| 136 |
|
elpm2r |
⊢ ( ( ( ℂ ∈ V ∧ 𝑆 ∈ { ℝ , ℂ } ) ∧ ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ∈ ( ℂ ↑pm 𝑆 ) ) |
| 137 |
84 1 114 3 136
|
syl22anc |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ∈ ( ℂ ↑pm 𝑆 ) ) |
| 138 |
|
dvn1 |
⊢ ( ( 𝑆 ⊆ ℂ ∧ ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ∈ ( ℂ ↑pm 𝑆 ) ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) ‘ 1 ) = ( 𝑆 D ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) ) |
| 139 |
124 137 138
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) ‘ 1 ) = ( 𝑆 D ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) ) |
| 140 |
126 122
|
eqtr3d |
⊢ ( 𝜑 → ( 𝑆 D ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) |
| 141 |
139 140
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) ‘ 1 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) |
| 142 |
141
|
dmeqd |
⊢ ( 𝜑 → dom ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) ‘ 1 ) = dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) |
| 143 |
80 142
|
eleqtrrd |
⊢ ( 𝜑 → 𝐵 ∈ dom ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) ‘ 1 ) ) |
| 144 |
|
eqid |
⊢ ( 1 ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) 𝐵 ) = ( 1 ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) 𝐵 ) |
| 145 |
1 114 3 135 143 144
|
taylpf |
⊢ ( 𝜑 → ( 1 ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) 𝐵 ) : ℂ ⟶ ℂ ) |
| 146 |
120 119
|
pncan3d |
⊢ ( 𝜑 → ( 1 + ( 𝑁 − 1 ) ) = 𝑁 ) |
| 147 |
146
|
oveq1d |
⊢ ( 𝜑 → ( ( 1 + ( 𝑁 − 1 ) ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) = ( 𝑁 ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) |
| 148 |
7 147
|
eqtr4id |
⊢ ( 𝜑 → 𝑇 = ( ( 1 + ( 𝑁 − 1 ) ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) |
| 149 |
148
|
oveq2d |
⊢ ( 𝜑 → ( ℂ D𝑛 𝑇 ) = ( ℂ D𝑛 ( ( 1 + ( 𝑁 − 1 ) ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ) |
| 150 |
149
|
fveq1d |
⊢ ( 𝜑 → ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) = ( ( ℂ D𝑛 ( ( 1 + ( 𝑁 − 1 ) ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ ( 𝑁 − 1 ) ) ) |
| 151 |
146
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 1 + ( 𝑁 − 1 ) ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) |
| 152 |
151
|
dmeqd |
⊢ ( 𝜑 → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 1 + ( 𝑁 − 1 ) ) ) = dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) |
| 153 |
80 152
|
eleqtrrd |
⊢ ( 𝜑 → 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 1 + ( 𝑁 − 1 ) ) ) ) |
| 154 |
1 2 3 100 135 153
|
dvntaylp |
⊢ ( 𝜑 → ( ( ℂ D𝑛 ( ( 1 + ( 𝑁 − 1 ) ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ ( 𝑁 − 1 ) ) = ( 1 ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) 𝐵 ) ) |
| 155 |
150 154
|
eqtrd |
⊢ ( 𝜑 → ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) = ( 1 ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) 𝐵 ) ) |
| 156 |
155
|
feq1d |
⊢ ( 𝜑 → ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) : ℂ ⟶ ℂ ↔ ( 1 ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) 𝐵 ) : ℂ ⟶ ℂ ) ) |
| 157 |
145 156
|
mpbird |
⊢ ( 𝜑 → ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) : ℂ ⟶ ℂ ) |
| 158 |
157
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ∈ ℂ ) |
| 159 |
133 158
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ∈ ℂ ) |
| 160 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 161 |
160
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
| 162 |
|
elpm2r |
⊢ ( ( ( ℂ ∈ V ∧ 𝑆 ∈ { ℝ , ℂ } ) ∧ ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ∈ ( ℂ ↑pm 𝑆 ) ) |
| 163 |
84 1 117 3 162
|
syl22anc |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ∈ ( ℂ ↑pm 𝑆 ) ) |
| 164 |
|
dvn0 |
⊢ ( ( 𝑆 ⊆ ℂ ∧ ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ∈ ( ℂ ↑pm 𝑆 ) ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) ‘ 0 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) |
| 165 |
124 163 164
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) ‘ 0 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) |
| 166 |
165
|
dmeqd |
⊢ ( 𝜑 → dom ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) ‘ 0 ) = dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) |
| 167 |
80 166
|
eleqtrrd |
⊢ ( 𝜑 → 𝐵 ∈ dom ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) ‘ 0 ) ) |
| 168 |
|
eqid |
⊢ ( 0 ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) 𝐵 ) = ( 0 ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) 𝐵 ) |
| 169 |
1 117 3 161 167 168
|
taylpf |
⊢ ( 𝜑 → ( 0 ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) 𝐵 ) : ℂ ⟶ ℂ ) |
| 170 |
119
|
addlidd |
⊢ ( 𝜑 → ( 0 + 𝑁 ) = 𝑁 ) |
| 171 |
170
|
oveq1d |
⊢ ( 𝜑 → ( ( 0 + 𝑁 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) = ( 𝑁 ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) |
| 172 |
171 7
|
eqtr4di |
⊢ ( 𝜑 → ( ( 0 + 𝑁 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) = 𝑇 ) |
| 173 |
172
|
oveq2d |
⊢ ( 𝜑 → ( ℂ D𝑛 ( ( 0 + 𝑁 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) = ( ℂ D𝑛 𝑇 ) ) |
| 174 |
173
|
fveq1d |
⊢ ( 𝜑 → ( ( ℂ D𝑛 ( ( 0 + 𝑁 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ 𝑁 ) = ( ( ℂ D𝑛 𝑇 ) ‘ 𝑁 ) ) |
| 175 |
170
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 0 + 𝑁 ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) |
| 176 |
175
|
dmeqd |
⊢ ( 𝜑 → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 0 + 𝑁 ) ) = dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) |
| 177 |
80 176
|
eleqtrrd |
⊢ ( 𝜑 → 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 0 + 𝑁 ) ) ) |
| 178 |
1 2 3 75 161 177
|
dvntaylp |
⊢ ( 𝜑 → ( ( ℂ D𝑛 ( ( 0 + 𝑁 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ 𝑁 ) = ( 0 ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) 𝐵 ) ) |
| 179 |
174 178
|
eqtr3d |
⊢ ( 𝜑 → ( ( ℂ D𝑛 𝑇 ) ‘ 𝑁 ) = ( 0 ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) 𝐵 ) ) |
| 180 |
179
|
feq1d |
⊢ ( 𝜑 → ( ( ( ℂ D𝑛 𝑇 ) ‘ 𝑁 ) : ℂ ⟶ ℂ ↔ ( 0 ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) 𝐵 ) : ℂ ⟶ ℂ ) ) |
| 181 |
169 180
|
mpbird |
⊢ ( 𝜑 → ( ( ℂ D𝑛 𝑇 ) ‘ 𝑁 ) : ℂ ⟶ ℂ ) |
| 182 |
181
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( ( ( ℂ D𝑛 𝑇 ) ‘ 𝑁 ) ‘ 𝑦 ) ∈ ℂ ) |
| 183 |
133 182
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( ( ℂ D𝑛 𝑇 ) ‘ 𝑁 ) ‘ 𝑦 ) ∈ ℂ ) |
| 184 |
124
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ ℂ ) |
| 185 |
184 158
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ∈ ℂ ) |
| 186 |
184 182
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( ( ℂ D𝑛 𝑇 ) ‘ 𝑁 ) ‘ 𝑦 ) ∈ ℂ ) |
| 187 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 188 |
187
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 189 |
|
toponmax |
⊢ ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) → ℂ ∈ ( TopOpen ‘ ℂfld ) ) |
| 190 |
188 189
|
mp1i |
⊢ ( 𝜑 → ℂ ∈ ( TopOpen ‘ ℂfld ) ) |
| 191 |
|
dfss2 |
⊢ ( 𝑆 ⊆ ℂ ↔ ( 𝑆 ∩ ℂ ) = 𝑆 ) |
| 192 |
124 191
|
sylib |
⊢ ( 𝜑 → ( 𝑆 ∩ ℂ ) = 𝑆 ) |
| 193 |
|
ssid |
⊢ ℂ ⊆ ℂ |
| 194 |
193
|
a1i |
⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
| 195 |
|
mapsspm |
⊢ ( ℂ ↑m ℂ ) ⊆ ( ℂ ↑pm ℂ ) |
| 196 |
1 2 3 75 80 7
|
taylpf |
⊢ ( 𝜑 → 𝑇 : ℂ ⟶ ℂ ) |
| 197 |
83 83
|
elmap |
⊢ ( 𝑇 ∈ ( ℂ ↑m ℂ ) ↔ 𝑇 : ℂ ⟶ ℂ ) |
| 198 |
196 197
|
sylibr |
⊢ ( 𝜑 → 𝑇 ∈ ( ℂ ↑m ℂ ) ) |
| 199 |
195 198
|
sselid |
⊢ ( 𝜑 → 𝑇 ∈ ( ℂ ↑pm ℂ ) ) |
| 200 |
|
dvnp1 |
⊢ ( ( ℂ ⊆ ℂ ∧ 𝑇 ∈ ( ℂ ↑pm ℂ ) ∧ ( 𝑁 − 1 ) ∈ ℕ0 ) → ( ( ℂ D𝑛 𝑇 ) ‘ ( ( 𝑁 − 1 ) + 1 ) ) = ( ℂ D ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ) ) |
| 201 |
194 199 100 200
|
syl3anc |
⊢ ( 𝜑 → ( ( ℂ D𝑛 𝑇 ) ‘ ( ( 𝑁 − 1 ) + 1 ) ) = ( ℂ D ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ) ) |
| 202 |
121
|
fveq2d |
⊢ ( 𝜑 → ( ( ℂ D𝑛 𝑇 ) ‘ ( ( 𝑁 − 1 ) + 1 ) ) = ( ( ℂ D𝑛 𝑇 ) ‘ 𝑁 ) ) |
| 203 |
201 202
|
eqtr3d |
⊢ ( 𝜑 → ( ℂ D ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ) = ( ( ℂ D𝑛 𝑇 ) ‘ 𝑁 ) ) |
| 204 |
157
|
feqmptd |
⊢ ( 𝜑 → ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) = ( 𝑦 ∈ ℂ ↦ ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ) ) |
| 205 |
204
|
oveq2d |
⊢ ( 𝜑 → ( ℂ D ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ) = ( ℂ D ( 𝑦 ∈ ℂ ↦ ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ) ) ) |
| 206 |
181
|
feqmptd |
⊢ ( 𝜑 → ( ( ℂ D𝑛 𝑇 ) ‘ 𝑁 ) = ( 𝑦 ∈ ℂ ↦ ( ( ( ℂ D𝑛 𝑇 ) ‘ 𝑁 ) ‘ 𝑦 ) ) ) |
| 207 |
203 205 206
|
3eqtr3d |
⊢ ( 𝜑 → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( ( ( ℂ D𝑛 𝑇 ) ‘ 𝑁 ) ‘ 𝑦 ) ) ) |
| 208 |
187 1 190 192 158 182 207
|
dvmptres3 |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑦 ∈ 𝑆 ↦ ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝑆 ↦ ( ( ( ℂ D𝑛 𝑇 ) ‘ 𝑁 ) ‘ 𝑦 ) ) ) |
| 209 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) |
| 210 |
|
resttopon |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
| 211 |
188 124 210
|
sylancr |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
| 212 |
|
topontop |
⊢ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Top ) |
| 213 |
211 212
|
syl |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Top ) |
| 214 |
|
toponuni |
⊢ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) → 𝑆 = ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
| 215 |
211 214
|
syl |
⊢ ( 𝜑 → 𝑆 = ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
| 216 |
3 215
|
sseqtrd |
⊢ ( 𝜑 → 𝐴 ⊆ ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
| 217 |
|
eqid |
⊢ ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) = ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) |
| 218 |
217
|
ntrss2 |
⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Top ∧ 𝐴 ⊆ ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ 𝐴 ) ⊆ 𝐴 ) |
| 219 |
213 216 218
|
syl2anc |
⊢ ( 𝜑 → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ 𝐴 ) ⊆ 𝐴 ) |
| 220 |
140
|
dmeqd |
⊢ ( 𝜑 → dom ( 𝑆 D ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) = dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) |
| 221 |
220 4
|
eqtrd |
⊢ ( 𝜑 → dom ( 𝑆 D ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) = 𝐴 ) |
| 222 |
124 114 3 209 187
|
dvbssntr |
⊢ ( 𝜑 → dom ( 𝑆 D ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) ⊆ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ 𝐴 ) ) |
| 223 |
221 222
|
eqsstrrd |
⊢ ( 𝜑 → 𝐴 ⊆ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ 𝐴 ) ) |
| 224 |
219 223
|
eqssd |
⊢ ( 𝜑 → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ 𝐴 ) = 𝐴 ) |
| 225 |
1 185 186 208 3 209 187 224
|
dvmptres2 |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑦 ∈ 𝐴 ↦ ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝐴 ↦ ( ( ( ℂ D𝑛 𝑇 ) ‘ 𝑁 ) ‘ 𝑦 ) ) ) |
| 226 |
1 115 118 131 159 183 225
|
dvmptsub |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ) ) ) = ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ 𝑁 ) ‘ 𝑦 ) ) ) ) |
| 227 |
226
|
breqd |
⊢ ( 𝜑 → ( 𝐵 ( 𝑆 D ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ) ) ) 0 ↔ 𝐵 ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ 𝑁 ) ‘ 𝑦 ) ) ) 0 ) ) |
| 228 |
98 227
|
mpbird |
⊢ ( 𝜑 → 𝐵 ( 𝑆 D ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ) ) ) 0 ) |
| 229 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ) ) ‘ 𝑥 ) − ( ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ) ) ‘ 𝐵 ) ) / ( 𝑥 − 𝐵 ) ) ) = ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ) ) ‘ 𝑥 ) − ( ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ) ) ‘ 𝐵 ) ) / ( 𝑥 − 𝐵 ) ) ) |
| 230 |
115 159
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ) ∈ ℂ ) |
| 231 |
230
|
fmpttd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ) ) : 𝐴 ⟶ ℂ ) |
| 232 |
209 187 229 124 231 3
|
eldv |
⊢ ( 𝜑 → ( 𝐵 ( 𝑆 D ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ) ) ) 0 ↔ ( 𝐵 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ 𝐴 ) ∧ 0 ∈ ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ) ) ‘ 𝑥 ) − ( ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ) ) ‘ 𝐵 ) ) / ( 𝑥 − 𝐵 ) ) ) limℂ 𝐵 ) ) ) ) |
| 233 |
228 232
|
mpbid |
⊢ ( 𝜑 → ( 𝐵 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ 𝐴 ) ∧ 0 ∈ ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ) ) ‘ 𝑥 ) − ( ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ) ) ‘ 𝐵 ) ) / ( 𝑥 − 𝐵 ) ) ) limℂ 𝐵 ) ) ) |
| 234 |
233
|
simprd |
⊢ ( 𝜑 → 0 ∈ ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ) ) ‘ 𝑥 ) − ( ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ) ) ‘ 𝐵 ) ) / ( 𝑥 − 𝐵 ) ) ) limℂ 𝐵 ) ) |
| 235 |
|
eldifi |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) → 𝑥 ∈ 𝐴 ) |
| 236 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) = ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) ) |
| 237 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) = ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) ) |
| 238 |
236 237
|
oveq12d |
⊢ ( 𝑦 = 𝑥 → ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ) = ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) ) ) |
| 239 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ) ) |
| 240 |
|
ovex |
⊢ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) ) ∈ V |
| 241 |
238 239 240
|
fvmpt |
⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ) ) ‘ 𝑥 ) = ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) ) ) |
| 242 |
|
fveq2 |
⊢ ( 𝑦 = 𝐵 → ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) = ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝐵 ) ) |
| 243 |
|
fveq2 |
⊢ ( 𝑦 = 𝐵 → ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) = ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝐵 ) ) |
| 244 |
242 243
|
oveq12d |
⊢ ( 𝑦 = 𝐵 → ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ) = ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝐵 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝐵 ) ) ) |
| 245 |
|
ovex |
⊢ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝐵 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝐵 ) ) ∈ V |
| 246 |
244 239 245
|
fvmpt |
⊢ ( 𝐵 ∈ 𝐴 → ( ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ) ) ‘ 𝐵 ) = ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝐵 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝐵 ) ) ) |
| 247 |
6 246
|
syl |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ) ) ‘ 𝐵 ) = ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝐵 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝐵 ) ) ) |
| 248 |
1 2 3 108 80 7
|
dvntaylp0 |
⊢ ( 𝜑 → ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝐵 ) = ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝐵 ) ) |
| 249 |
248
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝐵 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝐵 ) ) = ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝐵 ) − ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝐵 ) ) ) |
| 250 |
114 6
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝐵 ) ∈ ℂ ) |
| 251 |
250
|
subidd |
⊢ ( 𝜑 → ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝐵 ) − ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝐵 ) ) = 0 ) |
| 252 |
247 249 251
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ) ) ‘ 𝐵 ) = 0 ) |
| 253 |
241 252
|
oveqan12rd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ) ) ‘ 𝑥 ) − ( ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ) ) ‘ 𝐵 ) ) = ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) ) − 0 ) ) |
| 254 |
114
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) ∈ ℂ ) |
| 255 |
132
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℂ ) |
| 256 |
157
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) ∈ ℂ ) |
| 257 |
255 256
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) ∈ ℂ ) |
| 258 |
254 257
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) ) ∈ ℂ ) |
| 259 |
258
|
subid1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) ) − 0 ) = ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) ) ) |
| 260 |
253 259
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) ) = ( ( ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ) ) ‘ 𝑥 ) − ( ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ) ) ‘ 𝐵 ) ) ) |
| 261 |
235 260
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) ) = ( ( ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ) ) ‘ 𝑥 ) − ( ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ) ) ‘ 𝐵 ) ) ) |
| 262 |
132
|
ssdifssd |
⊢ ( 𝜑 → ( 𝐴 ∖ { 𝐵 } ) ⊆ ℂ ) |
| 263 |
262
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → 𝑥 ∈ ℂ ) |
| 264 |
132 6
|
sseldd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 265 |
264
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → 𝐵 ∈ ℂ ) |
| 266 |
263 265
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → ( 𝑥 − 𝐵 ) ∈ ℂ ) |
| 267 |
266
|
exp1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → ( ( 𝑥 − 𝐵 ) ↑ 1 ) = ( 𝑥 − 𝐵 ) ) |
| 268 |
261 267
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 1 ) ) = ( ( ( ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ) ) ‘ 𝑥 ) − ( ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ) ) ‘ 𝐵 ) ) / ( 𝑥 − 𝐵 ) ) ) |
| 269 |
268
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 1 ) ) ) = ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ) ) ‘ 𝑥 ) − ( ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ) ) ‘ 𝐵 ) ) / ( 𝑥 − 𝐵 ) ) ) ) |
| 270 |
269
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 1 ) ) ) limℂ 𝐵 ) = ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ) ) ‘ 𝑥 ) − ( ( 𝑦 ∈ 𝐴 ↦ ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑦 ) ) ) ‘ 𝐵 ) ) / ( 𝑥 − 𝐵 ) ) ) limℂ 𝐵 ) ) |
| 271 |
234 270
|
eleqtrrd |
⊢ ( 𝜑 → 0 ∈ ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 1 ) ) ) limℂ 𝐵 ) ) |
| 272 |
271
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → ( 𝜑 → 0 ∈ ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 1 ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 1 ) ) ) limℂ 𝐵 ) ) ) |
| 273 |
9
|
expr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ..^ 𝑁 ) ) → ( 0 ∈ ( ( 𝑦 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑛 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑛 ) ) ‘ 𝑦 ) ) / ( ( 𝑦 − 𝐵 ) ↑ 𝑛 ) ) ) limℂ 𝐵 ) → 0 ∈ ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − ( 𝑛 + 1 ) ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − ( 𝑛 + 1 ) ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ ( 𝑛 + 1 ) ) ) ) limℂ 𝐵 ) ) ) |
| 274 |
273
|
expcom |
⊢ ( 𝑛 ∈ ( 1 ..^ 𝑁 ) → ( 𝜑 → ( 0 ∈ ( ( 𝑦 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑛 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑛 ) ) ‘ 𝑦 ) ) / ( ( 𝑦 − 𝐵 ) ↑ 𝑛 ) ) ) limℂ 𝐵 ) → 0 ∈ ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − ( 𝑛 + 1 ) ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − ( 𝑛 + 1 ) ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ ( 𝑛 + 1 ) ) ) ) limℂ 𝐵 ) ) ) ) |
| 275 |
274
|
a2d |
⊢ ( 𝑛 ∈ ( 1 ..^ 𝑁 ) → ( ( 𝜑 → 0 ∈ ( ( 𝑦 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑛 ) ) ‘ 𝑦 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑛 ) ) ‘ 𝑦 ) ) / ( ( 𝑦 − 𝐵 ) ↑ 𝑛 ) ) ) limℂ 𝐵 ) ) → ( 𝜑 → 0 ∈ ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − ( 𝑛 + 1 ) ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − ( 𝑛 + 1 ) ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ ( 𝑛 + 1 ) ) ) ) limℂ 𝐵 ) ) ) ) |
| 276 |
23 43 55 67 272 275
|
fzind2 |
⊢ ( 𝑁 ∈ ( 1 ... 𝑁 ) → ( 𝜑 → 0 ∈ ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑁 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑁 ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 𝑁 ) ) ) limℂ 𝐵 ) ) ) |
| 277 |
11 276
|
mpcom |
⊢ ( 𝜑 → 0 ∈ ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑁 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑁 ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 𝑁 ) ) ) limℂ 𝐵 ) ) |
| 278 |
119
|
subidd |
⊢ ( 𝜑 → ( 𝑁 − 𝑁 ) = 0 ) |
| 279 |
278
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑁 ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ 0 ) ) |
| 280 |
|
dvn0 |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 0 ) = 𝐹 ) |
| 281 |
124 86 280
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 𝐹 ) ‘ 0 ) = 𝐹 ) |
| 282 |
279 281
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑁 ) ) = 𝐹 ) |
| 283 |
282
|
fveq1d |
⊢ ( 𝜑 → ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑁 ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 284 |
278
|
fveq2d |
⊢ ( 𝜑 → ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑁 ) ) = ( ( ℂ D𝑛 𝑇 ) ‘ 0 ) ) |
| 285 |
|
dvn0 |
⊢ ( ( ℂ ⊆ ℂ ∧ 𝑇 ∈ ( ℂ ↑pm ℂ ) ) → ( ( ℂ D𝑛 𝑇 ) ‘ 0 ) = 𝑇 ) |
| 286 |
193 199 285
|
sylancr |
⊢ ( 𝜑 → ( ( ℂ D𝑛 𝑇 ) ‘ 0 ) = 𝑇 ) |
| 287 |
284 286
|
eqtrd |
⊢ ( 𝜑 → ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑁 ) ) = 𝑇 ) |
| 288 |
287
|
fveq1d |
⊢ ( 𝜑 → ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑁 ) ) ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ) |
| 289 |
283 288
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑁 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑁 ) ) ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) − ( 𝑇 ‘ 𝑥 ) ) ) |
| 290 |
289
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑁 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑁 ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 𝑁 ) ) = ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝑇 ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 𝑁 ) ) ) |
| 291 |
290
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑁 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑁 ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 𝑁 ) ) ) = ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝑇 ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 𝑁 ) ) ) ) |
| 292 |
291 8
|
eqtr4di |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑁 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑁 ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 𝑁 ) ) ) = 𝑅 ) |
| 293 |
292
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 − 𝑁 ) ) ‘ 𝑥 ) − ( ( ( ℂ D𝑛 𝑇 ) ‘ ( 𝑁 − 𝑁 ) ) ‘ 𝑥 ) ) / ( ( 𝑥 − 𝐵 ) ↑ 𝑁 ) ) ) limℂ 𝐵 ) = ( 𝑅 limℂ 𝐵 ) ) |
| 294 |
277 293
|
eleqtrd |
⊢ ( 𝜑 → 0 ∈ ( 𝑅 limℂ 𝐵 ) ) |