| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dfbi1 | 
							⊢ ( ( 𝜑  ↔  𝜓 )  ↔  ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							pm2.21 | 
							⊢ ( ¬  ( 𝜓  →  𝜑 )  →  ( ( 𝜓  →  𝜑 )  →  ⊥ ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							imim2i | 
							⊢ ( ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) )  →  ( ( 𝜑  →  𝜓 )  →  ( ( 𝜓  →  𝜑 )  →  ⊥ ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							id | 
							⊢ ( ¬  ( 𝜓  →  𝜑 )  →  ¬  ( 𝜓  →  𝜑 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							falim | 
							⊢ ( ⊥  →  ¬  ( 𝜓  →  𝜑 ) )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							ja | 
							⊢ ( ( ( 𝜓  →  𝜑 )  →  ⊥ )  →  ¬  ( 𝜓  →  𝜑 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							imim2i | 
							⊢ ( ( ( 𝜑  →  𝜓 )  →  ( ( 𝜓  →  𝜑 )  →  ⊥ ) )  →  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) ) )  | 
						
						
							| 8 | 
							
								3 7
							 | 
							impbii | 
							⊢ ( ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) )  ↔  ( ( 𝜑  →  𝜓 )  →  ( ( 𝜓  →  𝜑 )  →  ⊥ ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							notbii | 
							⊢ ( ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) )  ↔  ¬  ( ( 𝜑  →  𝜓 )  →  ( ( 𝜓  →  𝜑 )  →  ⊥ ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							pm2.21 | 
							⊢ ( ¬  ( ( 𝜑  →  𝜓 )  →  ( ( 𝜓  →  𝜑 )  →  ⊥ ) )  →  ( ( ( 𝜑  →  𝜓 )  →  ( ( 𝜓  →  𝜑 )  →  ⊥ ) )  →  ⊥ ) )  | 
						
						
							| 11 | 
							
								
							 | 
							ax-1 | 
							⊢ ( ¬  ( ( 𝜑  →  𝜓 )  →  ( ( 𝜓  →  𝜑 )  →  ⊥ ) )  →  ( ( ( ( 𝜑  →  𝜓 )  →  ( ( 𝜓  →  𝜑 )  →  ⊥ ) )  →  ⊥ )  →  ¬  ( ( 𝜑  →  𝜓 )  →  ( ( 𝜓  →  𝜑 )  →  ⊥ ) ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							falim | 
							⊢ ( ⊥  →  ( ( ( ( 𝜑  →  𝜓 )  →  ( ( 𝜓  →  𝜑 )  →  ⊥ ) )  →  ⊥ )  →  ¬  ( ( 𝜑  →  𝜓 )  →  ( ( 𝜓  →  𝜑 )  →  ⊥ ) ) ) )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							ja | 
							⊢ ( ( ( ( 𝜑  →  𝜓 )  →  ( ( 𝜓  →  𝜑 )  →  ⊥ ) )  →  ⊥ )  →  ( ( ( ( 𝜑  →  𝜓 )  →  ( ( 𝜓  →  𝜑 )  →  ⊥ ) )  →  ⊥ )  →  ¬  ( ( 𝜑  →  𝜓 )  →  ( ( 𝜓  →  𝜑 )  →  ⊥ ) ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							pm2.43i | 
							⊢ ( ( ( ( 𝜑  →  𝜓 )  →  ( ( 𝜓  →  𝜑 )  →  ⊥ ) )  →  ⊥ )  →  ¬  ( ( 𝜑  →  𝜓 )  →  ( ( 𝜓  →  𝜑 )  →  ⊥ ) ) )  | 
						
						
							| 15 | 
							
								10 14
							 | 
							impbii | 
							⊢ ( ¬  ( ( 𝜑  →  𝜓 )  →  ( ( 𝜓  →  𝜑 )  →  ⊥ ) )  ↔  ( ( ( 𝜑  →  𝜓 )  →  ( ( 𝜓  →  𝜑 )  →  ⊥ ) )  →  ⊥ ) )  | 
						
						
							| 16 | 
							
								1 9 15
							 | 
							3bitri | 
							⊢ ( ( 𝜑  ↔  𝜓 )  ↔  ( ( ( 𝜑  →  𝜓 )  →  ( ( 𝜓  →  𝜑 )  →  ⊥ ) )  →  ⊥ ) )  |