Metamath Proof Explorer


Theorem tbw-negdf

Description: The definition of negation, in terms of -> and F. . (Contributed by Anthony Hart, 15-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion tbw-negdf ( ( ( ¬ 𝜑 → ( 𝜑 → ⊥ ) ) → ( ( ( 𝜑 → ⊥ ) → ¬ 𝜑 ) → ⊥ ) ) → ⊥ )

Proof

Step Hyp Ref Expression
1 pm2.21 ( ¬ 𝜑 → ( 𝜑 → ⊥ ) )
2 ax-1 ( ¬ 𝜑 → ( ( 𝜑 → ⊥ ) → ¬ 𝜑 ) )
3 falim ( ⊥ → ( ( 𝜑 → ⊥ ) → ¬ 𝜑 ) )
4 2 3 ja ( ( 𝜑 → ⊥ ) → ( ( 𝜑 → ⊥ ) → ¬ 𝜑 ) )
5 4 pm2.43i ( ( 𝜑 → ⊥ ) → ¬ 𝜑 )
6 1 5 impbii ( ¬ 𝜑 ↔ ( 𝜑 → ⊥ ) )
7 tbw-bijust ( ( ¬ 𝜑 ↔ ( 𝜑 → ⊥ ) ) ↔ ( ( ( ¬ 𝜑 → ( 𝜑 → ⊥ ) ) → ( ( ( 𝜑 → ⊥ ) → ¬ 𝜑 ) → ⊥ ) ) → ⊥ ) )
8 6 7 mpbi ( ( ( ¬ 𝜑 → ( 𝜑 → ⊥ ) ) → ( ( ( 𝜑 → ⊥ ) → ¬ 𝜑 ) → ⊥ ) ) → ⊥ )